- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Bello-Arufe, Aaron (2)
-
Hu, Renyu (2)
-
Tokadjian, Armen (2)
-
Welbanks, Luis (2)
-
Agol, Eric (1)
-
Barkaoui, Khalid (1)
-
Benkhaldoun, Zouhair (1)
-
Bennett, Katherine A (1)
-
Benni, Paul (1)
-
Berta-Thompson, Zachory (1)
-
Bieryla, Allyson (1)
-
Cañas, Caleb I (1)
-
Chachan, Yayaati (1)
-
Collins, Karen A (1)
-
Damiano, Mario (1)
-
Esparza-Borges, Emma (1)
-
Freedman, Richard (1)
-
Fu, Guangwei (1)
-
Fukui, Akihiko (1)
-
Gao, Peter (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Assessing the prevalence of atmospheres on rocky planets around M-dwarf stars is a top priority of exoplanet science. High-energy activity from M dwarfs can destroy the atmospheres of these planets, which could explain the lack of atmosphere detections to date. Volcanic outgassing has been proposed as a mechanism to replenish the atmospheres of tidally heated rocky planets. L 98-59 b, a sub-Earth transiting a nearby M dwarf, was recently identified as the most promising exoplanet to detect a volcanic atmosphere. We present the transmission spectrum of L 98-59 b from four transits observed with JWST NIRSpec G395H. Although the airless model provides an adequate fit to the data based on itsχ2, an SO2atmosphere is preferred by 3.6σover a flat line in terms of the Bayesian evidence. Such an atmosphere would likely be in a steady state where volcanism balances escape. If so, L 98-59 b must experience at least eight times as much volcanism and tidal heating per unit mass as Io. If volcanism is driven by runaway melting of the mantle, we predict the existence of a subsurface magma ocean in L 98-59 b extending up toRp ∼ 60%–90%. An SO2-rich volcanic atmosphere on L 98-59 b would be indicative of an oxidized mantle with an oxygen fugacity offO2 > IW + 2.7, and it would imply that L 98-59 b must have retained some of its volatile endowment despite its proximity to its star. Our findings suggest that volcanism may revive secondary atmospheres on tidally heated rocky planets around M dwarfs.more » « lessFree, publicly-accessible full text available February 13, 2026
-
Masuda, Kento; Libby-Roberts, Jessica E; Livingston, John H; Stevenson, Kevin B; Gao, Peter; Vissapragada, Shreyas; Fu, Guangwei; Han, Te; Greklek-McKeon, Michael; Mahadevan, Suvrath; et al (, The Astronomical Journal)Abstract Kepler-51 is a ≲1 Gyr old Sun-like star hosting three transiting planets with radii ≈6–9R⊕and orbital periods ≈45–130 days. Transit timing variations (TTVs) measured with past Kepler and Hubble Space Telescope (HST) observations have been successfully modeled by considering gravitational interactions between the three transiting planets, yielding low masses and low mean densities (≲0.1 g cm−3) for all three planets. However, the transit time of the outermost transiting planet Kepler-51d recently measured by the James Webb Space Telescope 10 yr after the Kepler observations is significantly discrepant from the prediction made by the three-planet TTV model, which we confirmed with ground-based and follow-up HST observations. We show that the departure from the three-planet model is explained by including a fourth outer planet, Kepler-51e, in the TTV model. A wide range of masses (≲MJup) and orbital periods (≲10 yr) are possible for Kepler-51e. Nevertheless, all the coplanar solutions found from our brute-force search imply masses ≲10M⊕for the inner transiting planets. Thus, their densities remain low, though with larger uncertainties than previously estimated. Unlike other possible solutions, the one in which Kepler-51e is around the 2:1 mean motion resonance with Kepler-51d implies low orbital eccentricities (≲0.05) and comparable masses (∼5M⊕) for all four planets, as is seen in other compact multiplanet systems. This work demonstrates the importance of long-term follow-up of TTV systems for probing longer-period planets in a system.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
