- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Tolbert, Alexander (2)
-
Blum, Avrim (1)
-
Diana, Emily (1)
-
Ravichandran, Kavya (1)
-
Roth, Aaron (1)
-
Weinstein, Scott (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
Bun, Mark (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bun, Mark (Ed.)In this paper, we relate the philosophical literature on pessimism traps to information cascades, a formal model derived from the economics and mathematics literature. A pessimism trap is a social pattern in which individuals in a community, in situations of uncertainty, copy the sub-optimal actions of others, despite their individual beliefs. This maps nicely onto the concept of an information cascade, which involves a sequence of agents making a decision between two alternatives, with a private signal of the superior alternative and a public history of others' actions. Key results from the economics literature show that information cascades occur with probability one in many contexts, and depending on the strength of the signal, populations can fall into the incorrect cascade very easily and quickly. Once formed, in the absence of external perturbation, a cascade cannot be broken - therefore, we derive an intervention that can be used to nudge a population from an incorrect to a correct cascade and, importantly, maintain the cascade once the subsidy is discontinued. We extend this to the case of multiple communities, each of which might have a different optimal action, and a government providing subsidies that cannot discriminate between communities and does not know which action is optimal for each. We study this both theoretically and empirically.more » « lessFree, publicly-accessible full text available June 3, 2026
-
Roth, Aaron; Tolbert, Alexander; Weinstein, Scott (, ACM Conference on Fairness Accountability and Transparency)Individual probabilities refer to the probabilities of outcomes that are realized only once: the probability that it will rain tomorrow, the probability that Alice will die within the next 12 months, the probability that Bob will be arrested for a violent crime in the next 18 months, etc. Individual probabilities are fundamentally unknowable. Nevertheless, we show that two parties who agree on the data—or on how to sample from a data distribution—cannot agree to disagree on how to model individual probabilities. This is because any two models of individual probabilities that substantially disagree can together be used to empirically falsify and improve at least one of the two models. This can be efficiently iterated in a process of “reconciliation” that results in models that both parties agree are superior to the models they started with, and which themselves (almost) agree on the forecasts of individual probabilities (almost) everywhere. We conclude that although individual probabilities are unknowable, they are contestable via a computationally and data efficient process that must lead to agreement. Thus we cannot find ourselves in a situation in which we have two equally accurate and unimprovable models that disagree substantially in their predictions—providing an answer to what is sometimes called the predictive or model multiplicity problem.more » « less
An official website of the United States government
