skip to main content

Search for: All records

Creators/Authors contains: "Tomov, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we present work towards the development of a new data analytics and machine learning (ML) framework, called MagmaDNN. Our main goal is to provide scalable, high-performance data analytics and ML solutions for scientific applications running on current and upcoming heterogeneous many-core GPU-accelerated architectures. To this end, since many of the functionalities needed are based on standard linear algebra (LA) routines, we designed MagmaDNN to derive its performance power from the MAGMA library. The close integration provides the fundamental (scalable high-performance) LA routines available in MAGMA as a backend to MagmaDNN. We present some design issues for performancemore »and scalability that are specific to ML using Deep Neural Networks (DNN), as well as the MagmaDNN designs towards overcoming them. In particular, MagmaDNN uses well established HPC techniques from the area of dense LA, including task-based parallelization, DAG representations, scheduling, mixed-precision algorithms, asynchronous solvers, and autotuned hyperparameter optimization. We illustrate these techniques and their incorporation and use to outperform other frameworks, currently available.« less
  2. ppohBEM is an open-source software package im- plementing the boundary element method. One of its main software tasks is the solution of the dense linear system of equations, for which, ppohBEM relies on another software package called HACApK. To reduce the cost of solving the linear system, HACApK hierarchically compresses the coefficient matrix using adaptive cross approximation. This hierarchical compression greatly reduces the storage and time complexities of the solver and enables the solution of large-scale boundary value problems. To extend the capability of ppohBEM, in this paper, we carefully port the HACApK’s linear solver onto GPU clusters. Though themore »potential of the GPUs has been widely accepted in high-performance computing, it is still a challenge to utilize the GPUs for a solver, like HACApK’s, that requires fine-grained computation and global communication. First, to utilize the GPUs, we integrate the batched GPU kernel that was recently released in the MAGMA software package. We discuss several techniques to improve the performance of the batched kernel. We then study various techniques to address the inter-GPU communication and study their effects on state-of- the-art GPU clusters. We believe that the techniques studied in this paper are of interest to a wide range of software packages running on GPUs, especially with the increasingly complex node architectures and the growing costs of the communication. We also hope that our efforts to integrate the GPU kernel or to setup the inter-GPU communication will influence the design of the future-generation batched kernels or the communication layer within a software stack.« less