skip to main content

Search for: All records

Creators/Authors contains: "Tomsia, Antoni P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Many natural materials present an ideal “recipe” for the development of future damage‐tolerant lightweight structural materials. One notable example is the brick‐and‐mortar structure of nacre, found in mollusk shells, which produces high‐toughness, bioinspired ceramics using polymeric mortars as a compliant phase. Theoretical modeling has predicted that use of metallic mortars could lead to even higher damage‐tolerance in these materials, although it is difficult to melt‐infiltrate metals into ceramic scaffolds as they cannot readily wet ceramics. To avoid this problem, an alternative (“bottom‐up”) approach to synthesize “nacre‐like” ceramics containing a small fraction of nickel mortar is developed. These materials are fabricated using nickel‐coated alumina platelets that are aligned using slip‐casting and rapidly sintered using spark‐plasma sintering. Dewetting of the nickel mortar during sintering is prevented by using NiO‐coated as well as Ni‐coated platelets. As a result, a “nacre‐like” alumina ceramic displaying a resistance‐curve toughness up to ≈16 MPa m½with a flexural strength of ≈300 MPa is produced.