skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Toner, Brandy M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kaçar, Betül (Ed.)
    The Soudan Underground Mine State Park, found in the Vermilion Iron Range in northern Minnesota, provides access to a ~ 2.7 billion-year-old banded iron formation. Exploratory boreholes drilled between 1958 and 1962 on the 27th level (713 m underground) of the mine intersect calcium and iron-rich brines that have recently been subject to metagenomic analysis and microbial enrichments. Using concentrated brine samples pumped from a borehole depth of up to 55 m, a novel Gram-positive bacterium was enriched under anaerobic, acetate-oxidizing, and Fe(III) citrate-reducing conditions. The isolated bacterium, designated strain MK1, is non-motile, rod-shaped, spore-forming, anaerobic, and mesophilic, with a growth range between 24°C and 30°C. The complete circular MK1 genome was found to be 3,720,236 bp and encodes 25 putative multiheme cytochromes, including homologs to inner membrane cytochromes in the Gram-negative bacteriumGeobacter sulfurreducensand cytoplasmic membrane and periplasmic cytochromes in the Gram-positive bacteriumThermincola potens. However, MK1 does not encode homologs of the peptidoglycan (CwcA) and cell surface-associated (OcwA) multiheme cytochromes proposed to be required byT. potensto perform extracellular electron transfer. The 16S rRNA gene sequence of MK1 indicates that its closest related isolate isDesulfitibacter alkalitoleransstrain sk.kt5 (91% sequence identity), which places MK1 in a novel genus within theDesulfitibacteraceaefamily andMoorellalesorder. Within theMoorellalesorder, onlyCalderihabitans maritimusstrain KKC1 has been reported to reduce Fe(III), and onlyD. alkalitoleranscan also grow in temperatures below 40°C. Thus, MK1 represents a novel species within a novel genus, for which we propose the name “Metallumcola ferriviriculae”strain MK1, and provides a unique opportunity to study a cytochrome-rich, mesophilic, Gram-positive, spore-forming Fe(III)-reducing bacterium.IMPORTANCEThe Soudan Underground Mine State Park gives access to understudied regions of the deep terrestrial subsurface that potentially predate the Great Oxidation Event. Studying organisms that have been relatively unperturbed by surface conditions for as long as 2.7 billion years may give us a window into ancient life before oxygen dominated the planet. Additionally, studying microbes from anoxic and iron-rich environments can help us better understand the requirements of life in analogous environments, such as on Mars. The isolation and characterization of “Metallumcola ferriviriculae”strain MK1 give us insights into a novel genus and species that is distinct both from its closest related isolates and from iron reducers characterized to date. “M. ferriviriculae”strain MK1 may also act as a model organism to study how the processes of sporulation and germination are affected by insoluble extracellular acceptors, as well as the impact of spores in the deep terrestrial biosphere. 
    more » « less
    Free, publicly-accessible full text available August 21, 2025
  2. Free, publicly-accessible full text available June 1, 2025
  3. Research into the deep biosphere requires an understanding of both the microbial community at a given site and the geochemical and hydrological factors that support that microbial community. To highlight the interplay between geochemistry and microbiology in these deep environments, we characterized the hydrogeologic and geochemical systems of a 2.7 Ga banded iron formation within the Canadian Shield in the Soudan Underground Mine State Park in Minnesota, United States, a site known to host a lithotrophic microbial community. Calcium-sodium-chloride brines, characteristic of deep groundwaters throughout the Canadian Shield, were found in the site with total dissolved constituents (<0.2 micron) as high as 116,000 mg/L (ppm) in one borehole. Comparison of the Soudan waters to those found at other sites in the Canadian Shield or other sites of deep biosphere research indicate that they are notable for their high magnesium concentrations relative to total salinity. Additionally, the most saline Soudan waters have distinct 2 H and 18 O water isotope values suggesting long periods of isolation from the surface, which would allow for the evolution of a distinctive subsurface community. The presence of the banded iron formation along with the long-term isolation of the shield waters make Soudan a site of great potential for future research into deep crustal life. Furthermore, our work at Soudan highlights how geochemical data can inform future research into the deep biosphere and highlights a path for future research at the mine. 
    more » « less
  4. null (Ed.)
    Deep subsurface environments are decoupled from Earth’s surface processes yet diverse, active, and abundant microbial communities thrive in these isolated environments. Microbes inhabiting the deep biosphere face unique challenges such as electron donor/acceptor limitations, pore space/fracture network limitations, and isolation from other microbes within the formation. Of the few systems that have been characterized, it is apparent that nutrient limitations likely facilitate diverse microbe-microbe interactions (i.e., syntrophic, symbiotic, or parasitic) and that these interactions drive biogeochemical cycling of major elements. Here we describe microbial communities living in low temperature, chemically reduced brines at the Soudan Underground Mine State Park, United States. The Soudan Iron mine intersects a massive hematite formation at the southern extent of the Canadian Shield. Fractured rock aquifer brines continuously flow from exploratory boreholes drilled circa 1960 and are enriched in deuterium compared to the global meteoric values, indicating brines have had little contact with surface derived waters, and continually degas low molecular weight hydrocarbons C 1 -C 4 . Microbial enrichments suggest that once brines exit the boreholes, oxidation of the hydrocarbons occur. Amplicon sequencing show these borehole communities are low in diversity and dominated by Firmicute and Proteobacteria phyla. From the metagenome assemblies, we recovered approximately thirty genomes with estimated completion over 50%. Analysis of genome taxonomy generally followed the amplicon data, and highlights that several of the genomes represent novel families and genera. Metabolic reconstruction shows two carbon-fixation pathways were dominant, the Wood-Ljungdahl (acetogenesis) and Calvin-Benson-Bassham (via RuBisCo), indicating that inorganic carbon likely enters into the microbial foodweb with differing carbon fractionation potentials. Interestingly, methanogenesis is likely driven by Methanolobus and suggests cycling of methylated compounds and not H 2 /CO 2 or acetate. Furthermore, the abundance of sulfate in brines suggests cryptic sulfur cycling may occur, as we detect possible sulfate reducing and thiosulfate oxidizing microorganisms. Finally, a majority of the microorganisms identified contain genes that would allow them to participate in several element cycles, highlighting that in these deep isolated systems metabolic flexibility may be an important life history trait. 
    more » « less