Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. One hypothesis for runaway stars (RSs) is that they are ejected from star clusters with high velocities relative to the cluster center-of-mass motion. There are two competing mechanisms for their production: supernova-based ejections in binaries, where one companion explodes, leaves no remnant, and launches the other companion at the instantaneous orbital velocity, and the disintegration of triples (or higher-order multiples), which produces a recoiled runaway binary (RB) and an RS. Aims. We search for RS candidates using data from the Gaia DR3 survey with a focus on triple disintegration since in this case the product is always a binary and a single star that should be moving in opposite directions. Methods. We created a systematic methodology to look for candidate RS-RB runaway pairs produced from the disintegration of bound three-body systems formed from single-binary interactions based on momentum conservation and causality. The method we use is general and can be applied to any cluster with a 5D kinematic data set. We used our criteria to search for these pairs in a 150 pc circular field of view surrounding the open cluster M67, which we used as a benchmark cluster to test the robustness of our method. Results. Our results reveal only one RS-RB pair that is consistent with all of our selection criteria out of an initial sample of 108pairs.more » « lessFree, publicly-accessible full text available May 1, 2026
-
ABSTRACT The third data release of Gaia was the first to include orbital solutions assuming non-single stars. Here, we apply the astrometric triage technique of Shahaf et al. to identify binary star systems with companions that are not single main-sequence stars. Gaia’s synthetic photometry of these binaries is used to distinguish between systems likely to have white-dwarf companions and those that may be hierarchical triples. The study uncovered a population of nearly $$3\, 200$$ binaries, characterized by orbital separations on the order of an astronomical unit, in which the faint astrometric companion is probably a white dwarf. This sample increases the number of orbitally solved binary systems of this type by about two orders of magnitude. Remarkably, over 110 of these systems exhibit significant ultraviolet excess flux, confirming this classification and, in some cases, indicating their relatively young cooling ages. We show that the sample is not currently represented in synthetic binary populations, and is not easily reproduced by available binary population synthesis codes. Therefore, it challenges current binary evolution models, offering a unique opportunity to gain insights into the processes governing white-dwarf formation, binary evolution, and mass transfer.more » « less
-
ABSTRACT We present a comprehensive overview of a volume-complete sample of white dwarfs located within 40 pc of the Sun, a significant proportion of which were detected in Gaia Data Release 3 (DR3). Our DR3 sample contains 1076 spectroscopically confirmed white dwarfs, with just five candidates within the volume remaining unconfirmed (> 99 per cent spectroscopic completeness). Additionally, 28 white dwarfs were not in our initial selection from Gaia DR3, most of which are in unresolved binaries. We use Gaia DR3 photometry and astrometry to determine a uniform set of white dwarf parameters, including mass, effective temperature, and cooling age. We assess the demographics of the 40 pc sample, specifically magnetic fields, binarity, space density, and mass distributions.more » « less
-
Abstract We present a spectroscopic survey of 248 white dwarf candidates within 40 pc of the Sun; of these 244 are in the Southern hemisphere. Observations were performed mostly with the Very Large Telescope (X-Shooter) and Southern Astrophysical Research Telescope. Almost all candidates were selected from Gaia Data Release 3 (DR3). We find a total of 246 confirmed white dwarfs, 209 of which had no previously published spectra, and two main-sequence star contaminants. Of these, 100 white dwarfs display hydrogen Balmer lines, 69 have featureless spectra, and two show only neutral helium lines. Additionally, 14 white dwarfs display traces of carbon, while 37 have traces of other elements that are heavier than helium. We observe 35 magnetic white dwarfs through the detection of Zeeman splitting of their hydrogen Balmer or metal spectral lines. High spectroscopic completeness (> 97 per cent) has now been reached, such that we have 1058 confirmed Gaia DR3 white dwarfs out of 1083 candidates within 40 pc of the Sun at all declinations.more » « less
An official website of the United States government
