For polyhedral constrained optimization problems and a feasible point
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
00000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Hager, William W. (1)
-
Toraldo, Gerardo (1)
-
Viola, Marco (1)
-
di Serafino, Daniela (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract , it is shown that the projection of the negative gradient on the tangent cone, denoted$$\textbf{x}$$ , has an orthogonal decomposition of the form$$\nabla _\varOmega f(\textbf{x})$$ . At a stationary point,$$\varvec{\beta }(\textbf{x}) + \varvec{\varphi }(\textbf{x})$$ so$$\nabla _\varOmega f(\textbf{x}) = \textbf{0}$$ reflects the distance to a stationary point. Away from a stationary point,$$\Vert \nabla _\varOmega f(\textbf{x})\Vert $$ and$$\Vert \varvec{\beta }(\textbf{x})\Vert $$ measure different aspects of optimality since$$\Vert \varvec{\varphi }(\textbf{x})\Vert $$ only vanishes when the KKT multipliers at$$\varvec{\beta }(\textbf{x})$$ have the correct sign, while$$\textbf{x}$$ only vanishes when$$\varvec{\varphi }(\textbf{x})$$ is a stationary point in the active manifold. As an application of the theory, an active set algorithm is developed for convex quadratic programs which adapts the flow of the algorithm based on a comparison between$$\textbf{x}$$ and$$\Vert \varvec{\beta }(\textbf{x})\Vert $$ .$$\Vert \varvec{\varphi }(\textbf{x})\Vert $$