skip to main content


Search for: All records

Creators/Authors contains: "Toscano, Joseph C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine learning techniques have proven to be a useful tool in cognitive neuroscience. However, their implementation in scalp‐recorded electroencephalography (EEG) is relatively limited. To address this, we present three analyses using data from a previous study that examined event‐related potential (ERP) responses to a wide range of naturally‐produced speech sounds. First, we explore which features of the EEG signal best maximize machine learning accuracy for a voicing distinction, using a support vector machine (SVM). We manipulate three dimensions of the EEG signal as input to the SVM: number of trials averaged, number of time points averaged, and polynomial fit. We discuss the trade‐offs in using different feature sets and offer some recommendations for researchers using machine learning. Next, we use SVMs to classify specific pairs of phonemes, finding that we can detect differences in the EEG signal that are not otherwise detectable using conventional ERP analyses. Finally, we characterize the timecourse of phonetic feature decoding across three phonological dimensions (voicing, manner of articulation, and place of articulation), and find that voicing and manner are decodable from neural activity, whereas place of articulation is not. This set of analyses addresses both practical considerations in the application of machine learning to EEG, particularly for speech studies, and also sheds light on current issues regarding the nature of perceptual representations of speech. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Abstract

    Over the past two years, face masks have been a critical tool for preventing the spread of COVID-19. While previous studies have examined the effects of masks on speech recognition, much of this work was conducted early in the pandemic. Given that human listeners are able to adapt to a wide variety of novel contexts in speech perception, an open question concerns the extent to which listeners have adapted to masked speech during the pandemic. In order to evaluate this, we replicated Toscano and Toscano (PLOS ONE 16(2):e0246842, 2021), looking at the effects of several types of face masks on speech recognition in different levels of multi-talker babble noise. We also examined the effects of listeners’ self-reported frequency of encounters with masked speech and the effects of the implementation of public mask mandates on speech recognition. Overall, we found that listeners’ performance in the current experiment (with data collected in 2021) was similar to that of listeners in Toscano and Toscano (with data collected in 2020) and that performance did not differ based on mask experience. These findings suggest that listeners may have already adapted to masked speech by the time data were collected in 2020, are unable to adapt to masked speech, require additional context to be able to adapt, or that talkers also changed their productions over time. Implications for theories of perceptual learning in speech are discussed.

     
    more » « less
  3. Fu, Qian-Jie (Ed.)
    Face masks are an important tool for preventing the spread of COVID-19. However, it is unclear how different types of masks affect speech recognition in different levels of background noise. To address this, we investigated the effects of four masks (a surgical mask, N95 respirator, and two cloth masks) on recognition of spoken sentences in multi-talker babble. In low levels of background noise, masks had little to no effect, with no more than a 5.5% decrease in mean accuracy compared to a no-mask condition. In high levels of noise, mean accuracy was 2.8-18.2% lower than the no-mask condition, but the surgical mask continued to show no significant difference. The results demonstrate that different types of masks generally yield similar accuracy in low levels of background noise, but differences between masks become more apparent in high levels of noise. 
    more » « less