skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tosi, Anthony J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hybridization and introgression are widespread in nature, with important implications for adaptation and speciation. Since heterogametic hybrids often have lower fitness than homogametic individuals, a phenomenon known as Haldane’s rule, loci inherited strictly through the heterogametic sex rarely introgress. We focus on the Y-chromosomal history of guenons, African primates that hybridized extensively in the past. Although our inferences suggest that Haldane’s rule generally applies, we uncover a Y chromosome introgression event between two species ca. six million years after their initial divergence. Using simulations, we show that selection likely drove the introgressing Y chromosome to fixation from a low initial frequency. We identify non-synonymous substitutions on the novel Y chromosome as candidate targets of selection, and explore meiotic drive as an alternative mechanism. Our results provide a rare example of Y chromosome introgression, showing that the ability to produce fertile heterogametic hybrids likely persisted for six million years in guenons. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. null (Ed.)
  3. null (Ed.)
    Bitter taste facilitates the detection of potentially harmful substances and is perceived via bitter taste receptors (TAS2Rs) expressed on the tongue and oral cavity in vertebrates. In primates, TAS2R16 specifically recognizes β-glucosides, which are important in cyanogenic plants' use of cyanide as a feeding deterrent. In this study, we performed cell-based functional assays for investigating the sensitivity of TAS2R16 to β-glucosides in three species of bamboo lemurs ( Prolemur simus, Hapalemur aureus and H. griseus ), which primarily consume high-cyanide bamboo. TAS2R16 receptors from bamboo lemurs had lower sensitivity to β-glucosides, including cyanogenic glucosides, than that of the closely related ring-tailed lemur ( Lemur catta ). Ancestral reconstructions of TAS2R16 for the bamboo-lemur last common ancestor (LCA) and that of the Hapalemur LCA showed an intermediate sensitivity to β-glucosides between that of the ring-tailed lemurs and bamboo lemurs. Mutagenetic analyses revealed that P. simus and H. griseus had separate species - specific substitutions that led to reduced sensitivity. These results indicate that low sensitivity to β-glucosides at the cellular level—a potentially adaptive trait for feeding on cyanogenic bamboo—evolved independently after the Prolemur – Hapalemur split in each species. 
    more » « less