skip to main content


Search for: All records

Creators/Authors contains: "Towsley, Don"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 20, 2025
  2. We study a quantum entanglement distribution switch serving a set of users in a star topology with equal-length links. The quantum switch, much like a quantum repeater, can perform entanglement swapping to extend entanglement across longer distances. Additionally, the switch is equipped with entanglement switching logic, enabling it to implement switching policies to better serve the needs of the network. In this work, the function of the switch is to create bipartite or tripartite entangled states among users at the highest possible rates at a fixed ratio. Using Markov chains, we model a set of randomized switching policies. Discovering that some are better than others, we present analytical results for the case where the switch stores one qubit per user, and find that the best policies outperform a time division multiplexing policy for sharing the switch between bipartite and tripartite state generation. This performance improvement decreases as the number of users grows. The model is easily augmented to study the capacity region in the presence of quantum state decoherence and associated cut-off times for qubit storage, obtaining similar results. Moreover, decoherence-associated quantum storage cut-off times appear to have little effect on capacity in our identical-link system. We also study a smaller class of policies when the switch stores two qubits per user. 
    more » « less
  3. The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case performance guarantees, we also aim to achieve near-optimal average performance under typical instances. Towards this goal, we propose a data-driven online algorithm that learns within a policy-class that guarantees a worst-case performance bound. In trace-driven experiments, we show that our data-driven algorithm outperforms other benchmark algorithms in an application of online knapsack to job scheduling for cloud computing. 
    more » « less
  4. Hemmer, Philip R. ; Migdall, Alan L. (Ed.)
    We study a quantum switch that creates shared end-to-end entangled quantum states to multiple sets of users that are connected to it. Each user is connected to the switch via an optical link across which bipartite Bell-state entangled states are generated in each time-slot with certain probabilities, and the switch merges entanglements of links to create end-to-end entanglements for users. One qubit of an entanglement of a link is stored at the switch and the other qubit of the entanglement is stored at the user corresponding to the link. Assuming that qubits of entanglements of links decipher after one time-slot, we characterize the capacity region, which is defined as the set of arrival rates of requests for end-to-end entanglements for which there exists a scheduling policy that stabilizes the switch. We propose a Max-Weight scheduling policy and show that it stabilizes the switch for all arrival rates that lie in the capacity region. We also provide numerical results to support our analysis. 
    more » « less