skip to main content


Search for: All records

Creators/Authors contains: "Tran, Dat Ba"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The paper proposes and develops a novel inexact gradient method (IGD) for minimizing smooth functions with Lipschitzian gradients. We show that the sequence of gradients generated by IGD converges to zero. The convergence of iterates to stationary points is guaranteed under the Kurdyka- Lojasiewicz property of the objective function with convergence rates depending on the KL exponent. The newly developed IGD is applied to designing two novel gradient-based methods of nonsmooth convex optimization such as the inexact proximal point methods (GIPPM) and the inexact augmented Lagrangian method (GIALM) for convex programs with linear equality constraints. These two methods inherit global convergence properties from IGD and are confirmed by numerical experiments to have practical advantages over some well-known algorithms of nonsmooth convex optimization 
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  2. This paper proposes and develops new linesearch methods with inexact gradient information for finding stationary points of nonconvex continuously differentiable functions on finite-dimensional spaces. Some abstract convergence results for a broad class of linesearch methods are established. A general scheme for inexact reduced gradient (IRG) methods is proposed, where the errors in the gradient approximation automatically adapt with the magnitudes of the exact gradients. The sequences of iterations are shown to obtain stationary accumulation points when different stepsize selections are employed. Convergence results with constructive convergence rates for the developed IRG methods are established under the Kurdyka–Łojasiewicz property. The obtained results for the IRG methods are confirmed by encouraging numerical experiments, which demonstrate advantages of automatically controlled errors in IRG methods over other frequently used error selections. 
    more » « less