- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0001000004000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Yin, George (4)
-
Tran, Ky Q. (3)
-
Nguyen, Dang H. (2)
-
Tran, Ky Q (2)
-
Le, Bich T. (1)
-
Nguyen, Dang H (1)
-
Tuong, Tran D (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tran, Ky Q.; Le, Bich T.; Yin, George (, Journal of Optimization Theory and Applications)
-
Nguyen, Dang H; Tran, Ky Q; Tuong, Tran D; Yin, George (, Mathematical Control and Related Fields)
-
Tran, Ky Q.; Nguyen, Dang H. (, Systems & Control Letters)
-
Tran, Ky Q.; Nguyen, Dang H.; Yin, George (, ESAIM: Control, Optimisation and Calculus of Variations)This paper aims to study stability in distribution of Markovian switching jump diffusions. The main motivation stems from stability and stabilizing hybrid systems in which there is no trivial solution. An explicit criterion for stability in distribution is derived. The stabilizing effects of Markov chains, Brownian motions, and Poisson jumps are revealed. Based on these criteria, stabilization problems of stochastic differential equations with Markovian switching and Poisson jumps are developed.more » « less
An official website of the United States government
