Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Flow-based generative models have recently become one of the most efficient approaches to model data generation. Indeed, they are constructed with a sequence of invertible and tractable transformations. Glow first introduced a simple type of generative flow using an invertible 1×1 convolution. However, the 1×1 convolution suffers from limited flexibility compared to the standard convolutions. In this paper, we propose a novel invertible n×n convolution approach that overcomes the limitations of the invertible 1×1 convolution. In addition, our proposed network is not only tractable and invertible but also uses fewer parameters than standard convolutions. The experiments on CIFAR-10, ImageNet and Celeb-HQ datasets, have shown that our invertible n×n convolution helps to improve the performance of generative models significantly.
-
Temporal action proposal generation is an essential and challenging task that aims at localizing temporal intervals containing human actions in untrimmed videos. Most of existing approaches are unable to follow the human cognitive process of understanding the video context due to lack of attention mechanism to express the concept of an action or an agent who performs the action or the interaction between the agent and the environment. Based on the action definition that a human, known as an agent, interacts with the environment and performs an action that affects the environment, we propose a contextual Agent-Environment Network. Our proposed contextual AEN involves (i) agent pathway, operating at a local level to tell about which humans/agents are acting and (ii) environment pathway operating at a global level to tell about how the agents interact with the environment. Comprehensive evaluations on 20-action THUMOS-14 and 200- action ActivityNet-1.3 datasets with different backbone networks, i.e C3D and SlowFast, show that our method robustly exhibits outperformance against state-of-the-art methods regardless of the employed backbone network.
-
In this paper, we investigate the interesting yet challenging problem of camouflaged instance segmentation. To this end, we first annotate the available CAMO dataset at the instance level. We also embed the data augmentation in order to increase the number of training samples. Then, we train different state-of-the-art instance segmentation on the CAMO-instance data. Last but not least, we develop an interactive user interface which demonstrates the performance of different state-of-the-art instance segmentation methods on the task of camouflaged instance segmentation. The users are able to compare the results of different methods on the given input images. Our work is expected to push the envelope of the camouflage analysis problem.
-
In this paper, we introduce a practical system for interactive video object mask annotation, which can support multiple back-end methods. To demonstrate the generalization of our system, we introduce a novel approach for video object annotation. Our proposed system takes scribbles at a chosen key-frame from the end-users via a user-friendly interface and produces masks of corresponding objects at the key-frame via the Control-Point-based Scribbles-to-Mask (CPSM) module. The object masks at the key-frame are then propagated to other frames and refined through the Multi-Referenced Guided Segmentation (MRGS) module. Last but not least, the user can correct wrong segmentation at some frames, and the corrected mask is continuously propagated to other frames in the video via the MRGS to produce the object masks at all video frames.
-
Traffic event retrieval is one of the important tasks for intelligent traffic system management. To find accurate candidate events in traffic videos corresponding to a specific text query, it is necessary to understand the text query's attributes, represent the visual and motion attributes of vehicles in videos, and measure the similarity between them. Thus we propose a promising method for vehicle event retrieval from a natural-language-based specification. We utilize both appearance and motion attributes of a vehicle and adapt the COOT model to evaluate the semantic relationship between a query and a video track. Experiments with the test dataset of Track 5 in AI City Challenge 2021 show that our method is among the top 6 with a score of 0.1560.