Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Microbial rhodopsins are widely distributed in aquatic environments and may significantly contribute to phototrophy and energy budgets in global oceans. However, the study of freshwater rhodopsins has been largely limited. Here, we explored the diversity, ecological distribution, and expression of opsin genes that encode the apoproteins of type I rhodopsins in humic and clearwater lakes with contrasting physicochemical and optical characteristics. Using metagenomes and metagenome-assembled genomes, we recovered opsin genes from a wide range of taxa, mostly predicted to encode green light-absorbing proton pumps. Viral opsin and novel bacterial opsin clades were recovered. Opsin genes occurred more frequently in taxa from clearwater than from humic water, and opsins in some taxa have nontypical ion-pumping motifs that might be associated with physicochemical conditions of these two freshwater types. Analyses of the surface layer of 33 freshwater systems revealed an inverse correlation between opsin gene abundance and lake dissolved organic carbon (DOC). In humic water with high terrestrial DOC and light-absorbing humic substances, opsin gene abundance was low and dramatically declined within the first few meters, whereas the abundance remained relatively high along the bulk water column in clearwater lakes with low DOC, suggesting opsin gene distribution is influenced by lake opticalmore »Free, publicly-accessible full text available March 8, 2024
-
ABSTRACT Viruses are ubiquitous on Earth and are keystone components of environments, ecosystems, and human health. Yet, viruses remain poorly studied because most cannot be isolated in a laboratory. In the field of biogeochemistry, which aims to understand the interactions between biology, geology, and chemistry, there is progress to be made in understanding the different roles played by viruses in nutrient cycling, food webs, and elemental transformations. In this commentary, we outline current microbial ecology frameworks for understanding biogeochemical cycling in aquatic ecosystems. Next, we review some existing experimental and computational techniques that are enabling us to study the role of viruses in biogeochemical cycling, using examples from aquatic environments. Finally, we provide a conceptual model that balances limitations of computational tools when combined with biogeochemistry and ecological data. We envision meeting the grand challenge of understanding how viruses impact biogeochemical cycling by using a multifaceted approach to viral ecology.
-
Abstract Background Advances in microbiome science are being driven in large part due to our ability to study and infer microbial ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-cell genomics. Such omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their functional capacities and activities, and reconstruct their roles in biogeochemical processes. Currently available tools for analyses of genomic data can annotate and depict metabolic functions to some extent; however, no standardized approaches are currently available for the comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and microbial contributions to biogeochemical cycling.
Results We present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable software to advance microbial ecology and biogeochemistry studies using genomes at the resolution of individual organisms and/or microbial communities. The genome-scale workflow includes annotation of microbial genomes, motif validation of biochemically validated conserved protein residues, metabolic pathway analyses, and calculation of contributions to individual biogeochemical transformations and cycles. The community-scale workflow supplements genome-scale analyses with determination of genome abundance in the microbiome, potential microbial metabolic handoffs and metabolite exchange, reconstruction of functional networks, and determination of microbial contributions to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-assembled genomes, ormore »
Conclusion METABOLIC enables the consistent and reproducible study of microbial community ecology and biogeochemistry using a foundation of genome-informed microbial metabolism, and will advance the integration of uncultivated organisms into metabolic and biogeochemical models. METABOLIC is written in Perl and R and is freely available under GPLv3 at
https://github.com/AnantharamanLab/METABOLIC . -
Kent, Angela D. (Ed.)ABSTRACT Methylmercury is a potent bioaccumulating neurotoxin that is produced by specific microorganisms that methylate inorganic mercury. Methylmercury production in diverse anaerobic bacteria and archaea was recently linked to the hgcAB genes. However, the full phylogenetic and metabolic diversity of mercury-methylating microorganisms has not been fully unraveled due to the limited number of cultured experimentally verified methylators and the limitations of primer-based molecular methods. Here, we describe the phylogenetic diversity and metabolic flexibility of putative mercury-methylating microorganisms by hgcAB identification in publicly available isolate genomes and metagenome-assembled genomes (MAGs) as well as novel freshwater MAGs. We demonstrate that putative mercury methylators are much more phylogenetically diverse than previously known and that hgcAB distribution among genomes is most likely due to several independent horizontal gene transfer events. The microorganisms we identified possess diverse metabolic capabilities spanning carbon fixation, sulfate reduction, nitrogen fixation, and metal resistance pathways. We identified 111 putative mercury methylators in a set of previously published permafrost metatranscriptomes and demonstrated that different methylating taxa may contribute to hgcA expression at different depths. Overall, we provide a framework for illuminating the microbial basis of mercury methylation using genome-resolved metagenomics and metatranscriptomics to identify putative methylators based upon hgcAB presence andmore »
-
Abstract Lake Tanganyika (LT) is the largest tropical freshwater lake, and the largest body of anoxic freshwater on Earth’s surface. LT’s mixed oxygenated surface waters float atop a permanently anoxic layer and host rich animal biodiversity. However, little is known about microorganisms inhabiting LT’s 1470 meter deep water column and their contributions to nutrient cycling, which affect ecosystem-level function and productivity. Here, we applied genome-resolved metagenomics and environmental analyses to link specific taxa to key biogeochemical processes across a vertical depth gradient in LT. We reconstructed 523 unique metagenome-assembled genomes (MAGs) from 34 bacterial and archaeal phyla, including many rarely observed in freshwater lakes. We identified sharp contrasts in community composition and metabolic potential with an abundance of typical freshwater taxa in oxygenated mixed upper layers, and Archaea and uncultured Candidate Phyla in deep anoxic waters. Genomic capacity for nitrogen and sulfur cycling was abundant in MAGs recovered from anoxic waters, highlighting microbial contributions to the productive surface layers via recycling of upwelled nutrients, and greenhouse gases such as nitrous oxide. Overall, our study provides a blueprint for incorporation of aquatic microbial genomics in the representation of tropical freshwater lakes, especially in the context of ongoing climate change, which is predicted tomore »