Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
The paper develops datasets and methods to assess student participation in real-life collaborative learning environments. In collaborative learning environments, students are organized into small groups where they are free to interact within their group. Thus, students can move around freely causing issues with strong pose variation, move out and re-enter the camera scene, or face away from the camera. We formulate the problem of assessing student participation into two subproblems: (i) student group detection against strong background interference from other groups, and (ii) dynamic participant tracking within the group. A massive independent testing dataset of 12,518,250 student label instances, of total duration of 21 hours and 22 minutes of real-life videos, is used for evaluating the performance of our proposed method for student group detection. The proposed method of using multiple image representations is shown to perform equally or better than YOLO on all video instances. Over the entire dataset, the proposed method achieved an F1 score of 0.85 compared to 0.80 for YOLO. Following student group detection, the paper presents the development of a dynamic participant tracking system for assessing student group participation through long video sessions. The proposed dynamic participant tracking system is shown to perform exceptionally well, missing a student in just one out of 35 testing videos. In comparison, a stateof- the-art method fails to track students in 14 out of the 35 testing videos. The proposed method achieves 82.3% accuracy on an independent set of long, real-life collaborative videos.more » « less
-
Abstract Polarons and spin-orbit (SO) coupling are distinct quantum effects that play a critical role in charge transport and spin-orbitronics. Polarons originate from strong electron-phonon interaction and are ubiquitous in polarizable materials featuring electron localization, in particular 3d transition metal oxides (TMOs). On the other hand, the relativistic coupling between the spin and orbital angular momentum is notable in lattices with heavy atoms and develops in 5d TMOs, where electrons are spatially delocalized. Here we combine ab initio calculations and magnetic measurements to show that these two seemingly mutually exclusive interactions are entangled in the electron-doped SO-coupled Mott insulator Ba2Na1−xCaxOsO6(0 < x < 1), unveiling the formation ofspin-orbital bipolarons. Polaron charge trapping, favoured by the Jahn-Teller lattice activity, converts the Os 5d1spin-orbital Jeff = 3/2 levels, characteristic of the parent compound Ba2NaOsO6(BNOO), into a bipolaron 5d2Jeff = 2 manifold, leading to the coexistence of different J-effective states in a single-phase material. The gradual increase of bipolarons with increasing doping creates robust in-gap states that prevents the transition to a metal phase even at ultrahigh doping, thus preserving the Mott gap across the entire doping range from d1BNOO to d2Ba2CaOsO6(BCOO).more » « less
-
null (Ed.)A route under development for the synthesis of bacteriochlorophyll a and analogues relies on joining an AD-dihydrodipyrrin (bearing a D-ring carboxaldehyde) and a BC-dihydrodipyrrin (bearing a C-ring β-ketoester group and a B-ring dimethoxymethyl group) via Knoevenagel condensation followed by double-ring closure (Nazarov cyclization, electrophilic aromatic substitution, and elimination of methanol). Prior synthetic studies afforded the bacteriochlorophyll skeleton containing a gem-dimethyl group in ring B, a trans -dialkyl group in ring D, and a carboethoxy group at the 3-position of ring A. To explore the incorporation of native substituents, the synthesis of two bacteriochlorophyll analogues thereof was pursued, one with 12-methyl and 3-carboethoxy groups and the other with 2,12-dimethyl and 3-acetyl groups. The 12-methyl group resulted in half the yield ( versus the unsubstituted analogue) in the Knoevenagel reaction, but insignificant effects in all other steps including the rate and yield of double-ring closure despite the known effects of alkyl groups to facilitate electrophilic substitution of pyrroles. The 2-methyl-3-acetyl group, however, resulted in diminished yields in several steps, including the Knoevenagel reaction, but not the double-ring closure. The results point to obstacles and openings on the path to total syntheses of the native pigments.more » « less
An official website of the United States government
