- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Anastasio, Cort. (1)
-
Guzman, Chrystal (1)
-
Ma, Lan (1)
-
Niedek, Christopher (1)
-
Tran, Theodore (1)
-
Zhang, Qi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Biomass burning emits large amounts of phenols, which can partition into cloud/fog drops and aerosol liquid water (ALW) and react to form aqueous secondary organic aerosol (aqSOA). Triplet excited states of organic compounds (3C*) are a likely oxidant, but there are no rate constants with highly substituted phenols that have high Henry’s law constants (KH) and are likely important in ALW. To address this gap, we investigated the kinetics of six highly substituted phenols with the triplet excited state of 3,4-dimethoxybenzaldehyde. Second-order rate constants at pH 2 are all fast, (2.6 - 4.6)E9 M-1 s-1, while values at pH 5 are 2 to 5 times smaller. Rate constants are reasonably described by a quantitative structure-activity relationship with phenol oxidation potentials, allowing rate constants of other phenols to be predicted. Triplet-phenol kinetics are unaffected by ammonium sulfate, sodium chloride, galactose (a biomass-burning sugar), or Fe(III). In contrast, ammonium nitrate increases the rate of phenol loss by making hydroxyl radical, while Cu(II) inhibits phenol decay. Mass yields of aqueous SOA from triplet reactions are large and range from 59 to 99%. Calculations using our data along with previous oxidant measurements indicate that phenols with high KH can be an important source of aqSOA in ALW, with 3C* typically the dominant oxidant.more » « less
An official website of the United States government
