skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tremblay, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present first results from James Webb Space Telescope Near-Infrared Spectrograph, Mid-Infrared Instrument, and Keck Cosmic Webb Imager integral field spectroscopy of the powerful but highly obscured host galaxy of the jetted radio source Cygnus A. We detect 169 infrared emission lines at 1.7–27μm and explore the kinematics and physical properties of the extended narrow-line region (NLR) in unprecedented detail. The density-stratified NLR appears to be shaped by the initial blow-out and ongoing interaction of the radio jet with the interstellar medium, creating a multiphase bicone with a layered structure composed of molecular and ionized gas. The NLR spectrum, with strong coronal emission at kiloparsec scale, is well modeled by active galactic nucleus photoionization. We find evidence that the NLR is rotating around the radio axis, perhaps mediated by magnetic fields and driven by angular momentum transfer from the radio jet. The overall velocity field of the NLR is well described by 250 km s−1outflow along biconical spiral flow lines, combining both rotation and outflow signatures. There is particularly bright [Feii]λ1.644μm emission from a dense, high-velocity dispersion, photoionized clump of clouds found near the projected radio axis. Outflows of 600–2000 km s−1are found in bullets and streamers of ionized gas that may be ablated by the radio jet from these clouds, driving a local outflow rate of 40Myr−1
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  2. Context. The host galaxy conditions for rapid supermassive black hole growth are poorly understood. Narrow-line Seyfert 1 (NLS1) galaxies often exhibit high accretion rates and are hypothesized to be prototypes of active galactic nuclei (AGN) at an early stage of their evolution. Aims. We present adaptive optics (AO) assisted VLT MUSE NFM observations of Mrk 1044, the nearest super-Eddington accreting NLS1. Together with archival MUSE WFM data, we aim to understand the host galaxy processes that drive Mrk 1044’s black hole accretion. Methods. We extracted the faint stellar continuum emission from the AGN-deblended host and performed spatially resolved emission line diagnostics with an unprecedented resolution. Combining both MUSE WFM and NFM-AO observations, we used a kinematic model of a thin rotating disk to trace the stellar and ionized gas motion from 10 kpc galaxy scales down to ∼30 pc around the nucleus. Results. Mrk 1044’s stellar kinematics follow circular rotation, whereas the ionized gas shows tenuous spiral features in the center. We resolve a compact star-forming circumnuclear ellipse (CNE) that has a semi-minor axis of 306 pc. Within this CNE, the gas is metal-rich and its line ratios are entirely consistent with excitation by star formation. With an integrated star formation rate of 0.19 ± 0.05  M ⊙  yr −1 , the CNE contributes 27% of the galaxy-wide star formation. Conclusions. We conclude that Mrk 1044’s nuclear activity has not yet affected the circumnuclear star formation. Thus, Mrk 1044 is consistent with the idea that NLS1s are young AGN. A simple mass budget consideration suggests that the circumnuclear star formation and AGN phase are connected and the patterns in the ionized gas velocity field are a signature of the ongoing AGN feeding. 
    more » « less
  3. Context. Active galactic nuclei (AGN) are thought to be intimately connected with their host galaxies through feeding and feedback processes. A strong coupling is predicted and supported by cosmological simulations of galaxy formation, but the details of the physical mechanisms are still observationally unconstrained. Aims. Galaxies are complex systems of stars and a multiphase interstellar medium (ISM). A spatially resolved multiwavelength survey is required to map the interaction of AGN with their host galaxies on different spatial scales and different phases of the ISM. The goal of the Close AGN Reference Survey (CARS) is to obtain the necessary spatially resolved multiwavelength observations for an unbiased sample of local unobscured luminous AGN. Methods. We present the overall CARS survey design and the associated wide-field optical integral-field unit (IFU) spectroscopy for all 41 CARS targets at z  < 0.06 randomly selected from the Hamburg/ESO survey of luminous unobscured AGN. This data set provides the backbone of the CARS survey and allows us to characterize host galaxy morphologies, AGN parameters, precise systemic redshifts, and ionized gas distributions including excitation conditions, kinematics, and metallicities in unprecedented detail. Results. We focus our study on the size of the extended narrow-line region (ENLR) which has been traditionally connected to AGN luminosity. Given the large scatter in the ENLR size–luminosity relation, we performed a large parameter search to identify potentially more fundamental relations. Remarkably, we identified the strongest correlation between the maximum projected ENLR size and the black hole mass, consistent with an R ENLR,max ∼ M BH 0.5 relationship. We interpret the maximum ENLR size as a timescale indicator of a single black hole (BH) radiative-efficient accretion episode for which we inferred 〈log( t AGN /[yr])〉 = (0.45 ± 0.08)log( M BH /[ M ⊙ ]) + 1.78 −0.67 +0.54 using forward modeling. The extrapolation of our inferred relation toward higher BH masses is consistent with an independent lifetime estimate from the He  II proximity zones around luminous AGN at z  ∼ 3. Conclusions. While our proposed link between the BH mass and AGN lifetime might be a secondary correlation itself or impacted by unknown biases, it has a few relevant implications if confirmed. For example, the famous AGN Eigenvector 1 parameter space may be partially explained by the range in AGN lifetimes. Also, the lack of observational evidence for negative AGN feedback on star formation can be explained by such timescale effects. Further observational tests are required to confirm or rule out our BH mass dependent AGN lifetime hypothesis. 
    more » « less
  4. ABSTRACT We present Atacama Large Millimetre/submillimetre Array observations of the brightest cluster galaxy Hydra-A, a nearby (z = 0.054) giant elliptical galaxy with powerful and extended radio jets. The observations reveal CO(1−0), CO(2–1), 13CO(2–1), CN(2–1), SiO(5–4), HCO+(1–0), HCO+(2–1), HCN(1–0), HCN(2–1), HNC(1–0), and H2CO(3–2) absorption lines against the galaxy’s bright and compact active galactic nucleus. These absorption features are due to at least 12 individual molecular clouds that lie close to the centre of the galaxy and have velocities of approximately −50 to +10 km s−1 relative to its recession velocity, where positive values correspond to inward motion. The absorption profiles are evidence of a clumpy interstellar medium within brightest cluster galaxies composed of clouds with similar column densities, velocity dispersions, and excitation temperatures to those found at radii of several kpc in the Milky Way. We also show potential variation in a ∼10 km s−1 wide section of the absorption profile over a 2 yr time-scale, most likely caused by relativistic motions in the hot spots of the continuum source that change the background illumination of the absorbing clouds. 
    more » « less
  5. Multi-phase filamentary structures around brightest cluster galaxies (BCG) are likely a key step of AGN-feedback. We observed molecular gas in three cool cluster cores, namely Centaurus, Abell S1101, and RXJ1539.5, and gathered ALMA (Atacama Large Millimeter/submillimeter Array) and MUSE (Multi Unit Spectroscopic Explorer) data for 12 other clusters. Those observations show clumpy, massive, and long (3−25 kpc) molecular filaments, preferentially located around the radio bubbles inflated by the AGN. Two objects show nuclear molecular disks. The optical nebula is certainly tracing the warm envelopes of cold molecular filaments. Surprisingly, the radial profile of the H α /CO flux ratio is roughly constant for most of the objects, suggesting that (i) between 1.2 and 6 times more cold gas could be present and (ii) local processes must be responsible for the excitation. Projected velocities are between 100 and 400 km s −1 , with disturbed kinematics and sometimes coherent gradients. This is likely due to the mixing in projection of several thin (and as yet) unresolved filaments. The velocity fields may be stirred by turbulence induced by bubbles, jets, or merger-induced sloshing. Velocity and dispersions are low, below the escape velocity. Cold clouds should eventually fall back and fuel the AGN. We compare the radial extent of the filaments, r fil , with the region where the X-ray gas can become thermally unstable. The filaments are always inside the low-entropy and short-cooling-time region, where t cool / t ff  <  20 (9 of 13 sources). The range of t cool / t ff of 8−23 at r fil , is likely due to (i) a more complex gravitational potential affecting the free-fall time t ff (sloshing, mergers, etc.) and (ii) the presence of inhomogeneities or uplifted gas in the ICM, affecting the cooling time t cool . For some of the sources, r fil lies where the ratio of the cooling time to the eddy-turnover time, t cool / t eddy , is approximately unity. 
    more » « less