skip to main content

Search for: All records

Creators/Authors contains: "Treu, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Time delay cosmography uses the arrival time delays between images in strong gravitational lenses to measure cosmological parameters, in particular the Hubble constant H 0 . The lens models used in time delay cosmography omit dark matter subhalos and line-of-sight halos because their effects are assumed to be negligible. We explicitly quantify this assumption by analyzing mock lens systems that include full populations of dark matter subhalos and line-of-sight halos, applying the same modeling assumptions used in the literature to infer H 0 . We base the mock lenses on six quadruply imaged quasars that have delivered measurements of themore »Hubble constant, and quantify the additional uncertainties and/or bias on a lens-by-lens basis. We show that omitting dark substructure does not bias inferences of H 0 . However, perturbations from substructure contribute an additional source of random uncertainty in the inferred value of H 0 that scales as the square root of the lensing volume divided by the longest time delay. This additional source of uncertainty, for which we provide a fitting function, ranges from 0.7 − 2.4%. It may need to be incorporated in the error budget as the precision of cosmographic inferences from single lenses improves, and it sets a precision limit on inferences from single lenses.« less
  2. ABSTRACT Strongly lensed quadruply imaged quasars (quads) are extraordinary objects. They are very rare in the sky and yet they provide unique information about a wide range of topics, including the expansion history and the composition of the Universe, the distribution of stars and dark matter in galaxies, the host galaxies of quasars, and the stellar initial mass function. Finding them in astronomical images is a classic ‘needle in a haystack’ problem, as they are outnumbered by other (contaminant) sources by many orders of magnitude. To solve this problem, we develop state-of-the-art deep learning methods and train them on realisticmore »simulated quads based on real images of galaxies taken from the Dark Energy Survey, with realistic source and deflector models, including the chromatic effects of microlensing. The performance of the best methods on a mixture of simulated and real objects is excellent, yielding area under the receiver operating curve in the range of 0.86–0.89. Recall is close to 100 per cent down to total magnitude i ∼ 21 indicating high completeness, while precision declines from 85 per cent to 70 per cent in the range i ∼ 17–21. The methods are extremely fast: training on 2 million samples takes 20 h on a GPU machine, and 108 multiband cut-outs can be evaluated per GPU-hour. The speed and performance of the method pave the way to apply it to large samples of astronomical sources, bypassing the need for photometric pre-selection that is likely to be a major cause of incompleteness in current samples of known quads.« less
    Free, publicly-accessible full text available May 5, 2023
  3. ABSTRACT We study the projected spatial offset between the ultraviolet continuum and Ly α emission for 65 lensed and unlensed galaxies in the Epoch of Reionization (5 ≤ z ≤ 7), the first such study at these redshifts, in order to understand the potential for these offsets to confuse estimates of the Ly α properties of galaxies observed in slit spectroscopy. While we find that ∼40 per cent of galaxies in our sample show significant projected spatial offsets ($|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$), we find a relatively modest average projected offset of $|\widetilde{\Delta }_{\rm {Ly}\alpha -\rm {UV}}|$  = 0.61 ± 0.08 proper kpc for the entire sample. Amore »small fraction of our sample, ∼10 per cent, exhibit offsets in excess of 2 proper kpc, with offsets seen up to ∼4 proper kpc, sizes that are considerably larger than the effective radii of typical galaxies at these redshifts. An internal comparison and a comparison to studies at lower redshift yielded no significant evidence of evolution of $|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$ with redshift. In our sample, ultraviolet (UV)-bright galaxies ($\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.67$) showed offsets a factor of three greater than their fainter counterparts ($\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.10$), 0.89 ± 0.18 versus 0.27 ± 0.05 proper kpc, respectively. The presence of companion galaxies and early stage merging activity appeared to be unlikely causes of these offsets. Rather, these offsets appear consistent with a scenario in which internal anisotropic processes resulting from stellar feedback, which is stronger in UV-brighter galaxies, facilitate Ly α fluorescence and/or backscattering from nearby or outflowing gas. The reduction in the Ly α flux due to offsets was quantified. It was found that the differential loss of Ly α photons for galaxies with average offsets is not, if corrected for, a limiting factor for all but the narrowest slit widths (<0.4 arcsec). However, for the largest offsets, if they are mostly perpendicular to the slit major axis, slit losses were found to be extremely severe in cases where slit widths of ≤1 arcsec were employed, such as those planned for James Webb Space Telescope/NIRSpec observations.« less
  4. ABSTRACT We present a catalogue of 22 755 objects with slitless, optical, Hubble Space Telescope (HST) spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS). The data cover ∼220 sq. arcmin to 7-orbit (∼10 ks) depth in 20 parallel pointings of the Advanced Camera for Survey’s G800L grism. The fields are located 6 arcmin away from 10 massive galaxy clusters in the HFF and CLASH footprints. 13 of the fields have ancillary HST imaging from these or other programs to facilitate a large number of applications, from studying metal distributions at z ∼ 0.5, to quasars at z ∼ 4, to the star formationmore »histories of hundreds of galaxies in between. The spectroscopic catalogue has a median redshift of 〈z〉 = 0.60 with a median uncertainty of $\Delta z / (1+z)\lesssim 2{{\ \rm per\ cent}}$ at $F814\mathit{ W}\lesssim 23$ AB. Robust continuum detections reach a magnitude fainter. The 5 σ limiting line flux is $f_{\rm lim}\approx 5\times 10^{-17}\rm ~erg~s^{-1}~cm^{-2}$ and half of all sources have 50 per cent of pixels contaminated at ≲1 per cent. All sources have 1D and 2D spectra, line fluxes/uncertainties and identifications, redshift probability distributions, spectral models, and derived narrow-band emission-line maps from the Grism Redshift and Line Analysis tool (grizli). We provide other basic sample characterizations, show data examples, and describe sources and potential investigations of interest. All data and products will be available online along with software to facilitate their use.« less
  5. ABSTRACT The structure of the broad-line region (BLR) is an essential ingredient in the determination of active galactic nucleus (AGN) virial black hole masses, which in turn are important to study the role of black holes in galaxy evolution. Constraints on the BLR geometry and dynamics can be obtained from velocity-resolved studies using reverberation mapping data (i.e. monitoring data). However, monitoring data are observationally expensive and only available for a limited sample of AGNs, mostly confined to the local Universe. Here, we explore a new version of a Bayesian inference, physical model of the BLR that uses an individual spectrummore »and prior information on the BLR size from the radius–luminosity relation, to model the AGN BLR geometry and dynamics. We apply our model to a sample of 11 AGNs, which have been previously modelled using monitoring data. Our single-epoch BLR model is able to constrain some of the BLR parameters with inferred parameter values that agree within the uncertainties with those determined from the modelling of monitoring data. We find that our model is able to derive stronger constraints on the BLR for AGNs with broad emission lines that qualitatively have more substructure and more asymmetry, presumably as they contain more information to constrain the physical model. The performance of this model makes it a practical and cost-effective tool to determine some of the BLR properties of a large sample of low- and high-redshift AGNs, for which monitoring data are not available.« less
  6. Abstract We investigate the environment and line of sight of the H0LiCOW lens B1608+656 using Subaru Suprime-Cam and the Hubble Space Telescope (HST) to perform a weak lensing analysis. We compare three different methods to reconstruct the mass map of the field, i.e. the standard Kaiser-Squires inversion coupled with inpainting and Gaussian or wavelet filtering, and ${\tt Glimpse}$ a method based on sparse regularization of the shear field. We find no substantial difference between the 2D mass reconstructions, but we find that the ground-based data is less sensitive to small-scale structures than the space-based observations. Marginalising over the results obtainedmore »with all the reconstruction techniques applied to the two available HST filters F606W and F814W, we estimate the external convergence, κext at the position of B1608+656 is $\kappa _{\mathrm{ext}}= 0.11^{+0.06}_{-0.04}$, where the error bars corresponds respectively to the 16th and 84th quartiles. This result is compatible with previous estimates using the number-counts technique, suggesting that B1608+656 resides in an over-dense line of sight, but with a completely different technique. Using our mass reconstructions, we also compare the convergence at the position of several groups of galaxies in the field of B1608+656 with the mass measurements using various analytical mass profiles, and find that the weak lensing results favor truncated halo models.« less
  7. ABSTRACT In recent years, breakthroughs in methods and data have enabled gravitational time delays to emerge as a very powerful tool to measure the Hubble constant H0. However, published state-of-the-art analyses require of order 1 yr of expert investigator time and up to a million hours of computing time per system. Furthermore, as precision improves, it is crucial to identify and mitigate systematic uncertainties. With this time delay lens modelling challenge, we aim to assess the level of precision and accuracy of the modelling techniques that are currently fast enough to handle of order 50 lenses, via the blind analysismore »of simulated data sets. The results in Rungs 1 and 2 show that methods that use only the point source positions tend to have lower precision ($10\!-\!20{{\ \rm per\ cent}}$) while remaining accurate. In Rung 2, the methods that exploit the full information of the imaging and kinematic data sets can recover H0 within the target accuracy (|A| < 2 per cent) and precision (<6 per cent per system), even in the presence of a poorly known point spread function and complex source morphology. A post-unblinding analysis of Rung 3 showed the numerical precision of the ray-traced cosmological simulations to be insufficient to test lens modelling methodology at the percent level, making the results difficult to interpret. A new challenge with improved simulations is needed to make further progress in the investigation of systematic uncertainties. For completeness, we present the Rung 3 results in an appendix and use them to discuss various approaches to mitigating against similar subtle data generation effects in future blind challenges.« less
  8. ABSTRACT The magnifications of compact-source lenses are extremely sensitive to the presence of low-mass dark matter haloes along the entire sightline from the source to the observer. Traditionally, the study of dark matter structure in compact-source strong gravitational lenses has been limited to radio-loud systems, as the radio emission is extended and thus unaffected by microlensing which can mimic the signal of dark matter structure. An alternate approach is to measure quasar nuclear-narrow-line emission, which is free from microlensing and present in virtually all quasar lenses. In this paper, we double the number of systems which can be used formore »gravitational lensing analyses by presenting measurements of narrow-line emission from a sample of eight quadruply imaged quasar lens systems, WGD J0405−3308, HS 0810+2554, RX J0911+0551, SDSS J1330+1810, PS J1606−2333, WFI 2026−4536, WFI 2033−4723, and WGD J2038−4008. We describe our updated grism spectral modelling pipeline, which we use to measure narrow-line fluxes with uncertainties of 2–10 per cent, presented here. We fit the lensed image positions with smooth mass models and demonstrate that these models fail to produce the observed distribution of image fluxes over the entire sample of lenses. Furthermore, typical deviations are larger than those expected from macromodel uncertainties. This discrepancy indicates the presence of perturbations caused by small-scale dark matter structure. The interpretation of this result in terms of dark matter models is presented in a companion paper.« less
  9. The H0LiCOW collaboration inferred via strong gravitational lensing time delays a Hubble constant value of H 0 = 73.3 −1.8 +1.7 km s −1 Mpc −1 , describing deflector mass density profiles by either a power-law or stars (constant mass-to-light ratio) plus standard dark matter halos. The mass-sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in H 0 . We quantify any potential effect of the MST with a flexible family of mass models, which directly encodes it, and they are hence maximally degenerate with H 0 . Our calculation ismore »based on a new hierarchical Bayesian approach in which the MST is only constrained by stellar kinematics. The approach is validated on mock lenses, which are generated from hydrodynamic simulations. We first applied the inference to the TDCOSMO sample of seven lenses, six of which are from H0LiCOW, and measured H 0 = 74.5 −6.1 +5.6 km s −1 Mpc −1 . Secondly, in order to further constrain the deflector mass density profiles, we added imaging and spectroscopy for a set of 33 strong gravitational lenses from the Sloan Lens ACS (SLACS) sample. For nine of the 33 SLAC lenses, we used resolved kinematics to constrain the stellar anisotropy. From the joint hierarchical analysis of the TDCOSMO+SLACS sample, we measured H 0 = 67.4 −3.2 +4.1 km s −1 Mpc −1 . This measurement assumes that the TDCOSMO and SLACS galaxies are drawn from the same parent population. The blind H0LiCOW, TDCOSMO-only and TDCOSMO+SLACS analyses are in mutual statistical agreement. The TDCOSMO+SLACS analysis prefers marginally shallower mass profiles than H0LiCOW or TDCOSMO-only. Without relying on the form of the mass density profile used by H0LiCOW, we achieve a ∼5% measurement of H 0 . While our new hierarchical analysis does not statistically invalidate the mass profile assumptions by H0LiCOW – and thus the H 0 measurement relying on them – it demonstrates the importance of understanding the mass density profile of elliptical galaxies. The uncertainties on H 0 derived in this paper can be reduced by physical or observational priors on the form of the mass profile, or by additional data.« less