skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Trigo_Torres, Ramses Seferino"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the past two decades, additive manufacturing has advanced significantly, enabling rapid fabrication of functional components across various applications. In medical devices, it has been used for prototyping, prosthetics, drug delivery platforms, and more recently, tissue scaffolding. However, current technologies face challenges, particularly in depositing conformal layers over curved surfaces. This study introduces a novel multi-nozzle extrusion printer concept designed to deposit soft gel layers onto curved surfaces. A custom clearance locking mechanism enhances the printer’s ability to achieve conformal coatings on both flat and curved substrates. We investigate key deposition parameters, including displacement volume and nozzle configuration, while comparing two deposition sequences: “Press and Express” and “Express and Press”. Our results demonstrate that the “Express and Press” technique yields more uniform, merged conformal layers than the “Press and Express” method. This technology holds promise for further refinement and potential applications in tissue engineering. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026