skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Triolo, Ronald J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. (1) Background: An iterative learning control (ILC) strategy was developed for a “Muscle First” Motor-Assisted Hybrid Neuroprosthesis (MAHNP). The MAHNP combines a backdrivable exoskeletal brace with neural stimulation technology to enable persons with paraplegia due to spinal cord injury (SCI) to execute ambulatory motions and walk upright. (2) Methods: The ILC strategy was developed to swing the legs in a biologically inspired ballistic fashion. It maximizes muscular recruitment and activates the motorized exoskeletal bracing to assist the motion as needed. The control algorithm was tested using an anatomically realistic three-dimensional musculoskeletal model of the lower leg and pelvis suitably modified to account for exoskeletal inertia. The model was developed and tested with the OpenSim biomechanical modeling suite. (3) Results: Preliminary data demonstrate the efficacy of the controller in swing-leg simulations and its ability to learn to balance muscular and motor contributions to improve performance and accomplish consistent stepping. In particular, the controller took 15 iterations to achieve the desired outcome with 0.3% error. 
    more » « less
  2. null (Ed.)
    Our group is developing a cyber-physical walking system (CPWS) for people paralyzed by spinal cord injuries (SCI). The current CPWS consists of a functional neuromuscular stimulation (FNS) system and a powered lower-limb exoskeleton for walking with leg movements in the sagittal plane. We are developing neural control systems that learn to assist the user of this CPWS to walk with stability. In a previous publication (Liu et al., Biomimetics, 2019, 4, 28), we showed a neural controller that stabilized a simulated biped in the sagittal plane. We are considering adding degrees of freedom to the CPWS to allow more natural walking movements and improved stability. Thus, in this paper, we present a new neural network enhanced control system that stabilizes a three-dimensional simulated biped model of a human wearing an exoskeleton. Results show that it stabilizes human/exoskeleton models and is robust to impact disturbances. The simulated biped walks at a steady pace in a range of typical human ambulatory speeds from 0.7 to 1.3 m/s, follows waypoints at a precision of 0.3 m, remains stable, and continues walking forward despite impact disturbances and adapts its speed to compensate for persistent external disturbances. Furthermore, the neural network controller stabilizes human models of different statures from 1.4 to 2.2 m tall without any changes to the control parameters. Please see videos at the following link: 3D biped walking control . 
    more » « less
  3. null (Ed.)
    The development of powered assistive devices that integrate exoskeletal motors and muscle activation for gait restoration benefits from actuators with low backdrive torque. Such an approach enables motors to assist as needed while maximizing the joint torque muscles, contributing to movement, and facilitating ballistic motions instead of overcoming passive dynamics. Two electromechanical actuators were developed to determine the effect of two candidate transmission implementations for an exoskeletal joint. To differentiate the transmission effects, the devices utilized the same motor and similar gearing. One actuator included a commercially available harmonic drive transmission while the other incorporated a custom designed two-stage planetary transmission. Passive resistance and mechanical efficiency were determined based on isometric torque and passive resistance. The planetary-based actuator outperformed the harmonic-based actuator in all tests and would be more suitable for hybrid exoskeletons. 
    more » « less
  4. null (Ed.)
    Estimating center of mass (COM) through sensor measurements is done to maintain walking and standing stability with exoskeletons. The authors present a method for estimating COM kinematics through an artificial neural network, which was trained by minimizing the mean squared error between COM displacements measured by a gold-standard motion capture system and recorded acceleration signals from body-mounted accelerometers. A total of 5 able-bodied participants were destabilized during standing through: (1) unexpected perturbations caused by 4 linear actuators pulling on the waist and (2) volitionally moving weighted jars on a shelf. Each movement type was averaged across all participants. The algorithm’s performance was quantified by the root mean square error and coefficient of determination ( R 2 ) calculated from both the entire trial and during each perturbation type. Throughout the trials and movement types, the average coefficient of determination was 0.83, with 89% of the movements with R 2  > .70, while the average root mean square error ranged between 7.3% and 22.0%, corresponding to 0.5- and 0.94-cm error in both the coronal and sagittal planes. COM can be estimated in real time for balance control of exoskeletons for individuals with a spinal cord injury, and the procedure can be generalized for other gait studies. 
    more » « less
  5. Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal. Therefore, this paper presents an overview of challenges and research directions regarding an interface with the peripheral nervous system, an interface with the central nervous system, and the requirements of interface computing architectures. The interface should be modular and adaptable, such that it can provide assistance where it is needed. Novel data processing technology should be developed to allow for real-time processing while accounting for signal variations in the human. Personalized biomechanical models and simulation techniques should be developed to predict assisted walking motions and interactions between the user and the device. Furthermore, the advantages of interfacing with both the brain and the spinal cord or the periphery should be further explored. Technological advances of interface computing architecture should focus on learning on the chip to achieve further personalization. Furthermore, energy consumption should be low to allow for longer use of the neuroprosthesis. In-memory processing combined with resistive random access memory is a promising technology for both. This paper discusses the aforementioned aspects to highlight new directions for future research in gait neuroprosthetics. 
    more » « less
  6. This paper presents the design and deployment of a modular, portable and inexpensive embedded control system architecture for the hybrid neuroprosthesis (HNP). It consist of a suite of custom designed electronic hardware and firmware to provide wireless connectivity for close-loop control with mechanical exoskeletal constraints and neural stimulation with provisions for power assist to restore locomotion functions for individuals with spinal cord injury (SCI). The design philosophy, methodology, and implementation are described and discussed in details. Bench testing and subject experimentation have been conducted to evaluate the performance of the HNP system. We conclude that the embedded control system meets the technical requirements and design criteria, and can thus be considered as a potential reference design for generic biomedical research and clinical deployment in the neuroprosthetic and exoskeleton fields. 
    more » « less