Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A family of Zn 16 Ln(HA) 16 metallacrowns (MCs; Ln = Yb III , Er III , and Nd III ; HA = picoline- (picHA 2− ), pyrazine- (pyzHA 2− ), and quinaldine- (quinHA 2− ) hydroximates) with an ‘encapsulated sandwich’ structure possesses outstanding luminescence properties in the near-infrared (NIR) and suitability for cell imaging. Here, to decipher which parameters affect their functional and photophysical properties and how the nature of the hydroximate ligands can allow their fine tuning, we have completed this Zn 16 Ln(HA) 16 family by synthesizing MCs with two new ligands, naphthyridine- (napHA 2− ) and quinoxaline- (quinoHA 2− ) hydroximates. Zn 16 Ln(napHA) 16 and Zn 16 Ln(quinoHA) 16 exhibit absorption bands extended into the visible range and efficiently sensitize the NIR emissions of Yb III , Er III , and Nd III upon excitation up to 630 nm. The energies of the lowest singlet (S 1 ), triplet (T 1 ) and intra-ligand charge transfer (ILCT) states have been determined. Ln III -centered total ( Q LLn) and intrinsic ( Q LnLn) quantum yields, sensitization efficiencies ( η sens ), observed ( τ obs ) and radiative ( τ rad ) luminescence lifetimes havemore »