- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Trivedi, Jayati (2)
-
Uhde-Stone, Claudia (2)
-
Babaeianjelodar, Nadali (1)
-
Chakravarty, Indrani (1)
-
Lee, Yishen (1)
-
Mansoor, Aniqua (1)
-
Maxwell, Jason M (1)
-
McMillan, Mark (1)
-
Shammi, Tahmina (1)
-
Sierras, Dakota (1)
-
Williamson, Matthew (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Traditional plant breeding methods alone are insufficient to guarantee food security for a growing global population under a changing climate, necessitating more advanced approaches to develop productive and resilient crop varieties. The development of genome editing tools, particularly CRISPR/CAS, are significantly speeding up crop improvement by enabling targeted breeding in most crop species. However, for many crop species, the need for tissue culture remains a major bottle neck, slowing the progress of crop improvement. In this review, we are presenting and discussing approaches for delivering genome editing tools into a wide variety of crop plants, including perennials, and ideally without integration of transgenes. We suggest that efficient non-tissue culture delivery systems for high-performance genome editing are needed to fully reach the genome engineering potential in crop plants.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Shammi, Tahmina; Lee, Yishen; Trivedi, Jayati; Sierras, Dakota; Mansoor, Aniqua; Maxwell, Jason M; Williamson, Matthew; McMillan, Mark; Chakravarty, Indrani; Uhde-Stone, Claudia (, International Journal of Molecular Sciences)Phosphorus (P) and iron (Fe) deficiency are major limiting factors for plant productivity worldwide. White lupin (Lupinus albus L.) has become a model plant for understanding plant adaptations to P and Fe deficiency, because of its ability to form cluster roots, bottle-brush-like root structures play an important role in the uptake of P and Fe from soil. However, little is known about the signaling pathways involved in sensing and responding to P and Fe deficiency. Sucrose, sent in increased concentrations from the shoot to the root, has been identified as a long-distance signal of both P and Fe deficiency. To unravel the responses to sucrose as a signal, we performed Oxford Nanopore cDNA sequencing of white lupin roots treated with sucrose for 10, 15, or 20 min compared to untreated controls. We identified a set of 17 genes, including 2 bHLH transcription factors, that were up-regulated at all three time points of sucrose treatment. GO (gene ontology) analysis revealed enrichment of auxin and gibberellin responses as early as 10 min after sucrose addition, as well as the emerging of ethylene responses at 20 min of sucrose treatment, indicating a sequential involvement of these hormones in plant responses to sucrose.more » « less
An official website of the United States government
