skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Trueman, T C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Accurate nuclear reaction rates for26P(p,γ)27S are pivotal for a comprehensive understanding of therp-process nucleosynthesis path in the region of proton-rich sulfur and phosphorus isotopes. However, large uncertainties still exist in the current rate of26P(p,γ)27S because of the lack of nuclear mass and energy level structure information for27S. We reevaluate this reaction rate using the experimentally constrained27S mass, together with the shell model predicted level structure. It is found that the26P(p,γ)27S reaction rate is dominated by a direct capture reaction mechanism despite the presence of three resonances atE= 1.104, 1.597, and 1.777 MeV above the proton threshold in27S. The new rate is overall smaller than the other previous rates from the Hauser–Feshbach statistical model by at least 1 order of magnitude in the temperature range of X-ray burst interest. In addition, we consistently update the photodisintegration rate using the new27S mass. The influence of new rates of forward and reverse reaction in the abundances of isotopes produced in therp-process is explored by postprocessing nucleosynthesis calculations. The final abundance ratio of27S/26P obtained using the new rates is only 10% of that from the old rate. The abundance flow calculations show that the reaction path26P(p,γ)27S(β+,ν)27P is not as important as previously thought for producing27P. The adoption of the new reaction rates for26P(p,γ)27S only reduces the final production of aluminum by 7.1% and has no discernible impact on the yield of other elements. 
    more » « less
  2. Abstract The radioisotope 26 Al is a key observable for nucleosynthesis in the Galaxy and the environment of the early Solar System. To properly interpret the large variety of astronomical and meteoritic data, it is crucial to understand both the nuclear reactions involved in the production of 26 Al in the relevant stellar sites and the physics of such sites. These range from the winds of low- and intermediate-mass asymptotic giant branch stars; to massive and very massive stars, both their Wolf–Rayet winds and their final core-collapse supernovae (CCSN); and the ejecta from novae, the explosions that occur on the surface of a white dwarf accreting material from a stellar companion. Several reactions affect the production of 26 Al in these astrophysical objects, including (but not limited to) 25 Mg( p , γ ) 26 Al, 26 Al( p , γ ) 27 Si, and 26 Al( n , p / α ). Extensive experimental effort has been spent during recent years to improve our understanding of such key reactions. Here we present a summary of the astrophysical motivation for the study of 26 Al, a review of its production in the different stellar sites, and a timely evaluation of the currently available nuclear data. We also provide recommendations for the nuclear input into stellar models and suggest relevant, future experimental work. 
    more » « less