skip to main content


Search for: All records

Creators/Authors contains: "Truong, Mimi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nyx is a nearby, prograde, and high-eccentricity stellar stream physically contained in the thick disk, but its origin is unknown. Nyx could be the remnant of a disrupted dwarf galaxy, in which case the associated dark matter substructure could affect terrestrial dark matter direct-detection experiments. Alternatively, Nyx could be a signature of the Milky Way’s disk formation and evolution. To determine the origin of Nyx, we obtained high-resolution spectroscopy of 34 Nyx stars using Keck/HIRES and Magellan/MIKE. A differential chemical abundance analysis shows that most Nyx stars reside in a metal-rich ([Fe/H] > −1) high-αcomponent that is chemically indistinguishable from the thick disk. This rules out the originally suggested scenario that Nyx is the remnant of a single massive dwarf galaxy merger. However, we also identify 5 substantially more metal-poor stars ([Fe/H] ∼ −2.0) whose chemical abundances are similar to those of the metal-weak thick disk. It remains unclear how stars that are chemically identical to the thick disk can be on such prograde, high-eccentricity orbits. We suggest two most likely scenarios: that Nyx is the result of an early minor dwarf galaxy merger, or that it is a record of the early spin-up of the Milky Way disk—although neither perfectly reproduces the chemodynamic observations. The most likely formation scenarios suggest that future spectroscopic surveys should find Nyx-like structures outside of the solar neighborhood.

     
    more » « less