- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Tsai, Ah-Lim (2)
-
Wu, Gang (2)
-
Arndt, Catherine E (1)
-
Bayles, Aaron (1)
-
Dhindsa, Parmeet (1)
-
Everitt, Henry O (1)
-
Farr, Corbin (1)
-
Halas, Naomi J (1)
-
Hammel, Benjamin Franklin (1)
-
Jacobson, Christian R (1)
-
Louie, Stacey M. (1)
-
Luu, Jessica T (1)
-
Mathew, Riya A. (1)
-
Naidu, Gopal Narmada (1)
-
Nordlander, Peter (1)
-
Shakiba, Sheyda (1)
-
Solti, David (1)
-
Yao, Yan (1)
-
Yates, J_Alexander Orion (1)
-
Yazdi, Sadegh (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mathew, Riya A.; Wu, Gang; Zhang, Ye; Shakiba, Sheyda; Yao, Yan; Tsai, Ah-Lim; Louie, Stacey M. (, Environmental Science: Nano)Titanium dioxide (TiO 2 ) nanoparticles have been widely studied for water treatment applications; however, natural organic matter (NOM) is often reported to hamper the efficiency of the nanoparticles toward the degradation of target pollutants. Phosphate treatment has been proposed as a potentially facile solution to this problem, as phosphate competes for TiO 2 surface sites to diminish the NOM adsorption. However, the potential importance of the conditions of the NOM exposure and the residual NOM remaining after phosphate treatment have not been fully explored. Here, we investigate the reactivity of phosphate-treated TiO 2 nanoparticles with NOM coatings adsorbed from two background water chemistries, deionized water (TiO 2 –NOM DIW ) and moderately hard water (TiO 2 –NOM MHW ). Thorough characterization by size exclusion chromatography revealed that the adsorbed NOM was only partially displaced after phosphate treatment, with a higher adsorbed mass and wider variety of NOM species persisting on TiO 2 –NOM MHW compared to TiO 2 –NOM DIW . Although the remaining adsorbed NOM did not significantly influence the degradation rate of phenol as a model pollutant, remarkably distinct effects were observed in the degradation of catechol as an oxidative byproduct of phenol, with TiO 2 –NOM MHW hindering catechol degradation and TiO 2 –NOM DIW accelerating catechol degradation. The suppressed reactivity for TiO 2 –NOM MHW was attributed to hindrance of the physical adsorption of catechol to the TiO 2 surface by the NOM MHW layer as well as changes in the reactive oxygen species profile as measured by electron paramagnetic resonance (EPR) spectroscopy, whereas the enhanced reactivity for TiO 2 –NOM DIW was attributed to higher hole formation, suggesting participation of the NOM DIW layer in electron transfer processes. This research highlights the critical importance of the NOM surface coating in directing the mechanisms for pollutant degradation in photocatalytic nano-enabled water treatment applications.more » « less
An official website of the United States government
