Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hybrid zones can be studied by modeling clines of trait variation (e.g., morphology, genetics) over a linear transect. Yet, hybrid zones can also be spatially complex, can shift over time, and can even lead to the formation of hybrid lineages with the right combination of dispersal and vicariance. We reassessed Sibley’s (1950) gradient between Collared Towhee (Pipilo ocai) and Spotted Towhee (Pipilo maculatus) in Central Mexico to test whether it conformed to a typical tension-zone cline model. By comparing historical and modern data, we found that cline centers for genetic and phenotypic traits have not shifted over the course of 70 years. This equilibrium suggests that secondary contact between these species, which originally diverged over 2 million years ago, likely dates to the Pleistocene. Given the amount of mtDNA divergence, parental ends of the cline have very low autosomal nuclear differentiation (FST = 0.12). Dramatic and coincident cline shifts in mtDNA and throat color suggest the possibility of sexual selection as a factor in differential introgression, while a contrasting cline shift in green back color hints at a role for natural selection. Supporting the idea of a continuum between clinal variation and hybrid lineage formation, the towhee gradient can be analyzed as one population under isolation-by-distance, as a two-population cline, and as three lineages experiencing divergence with gene flow. In the middle of the gradient, a hybrid lineage has become partly isolated, likely due to forested habitat shrinking and fragmenting as it moved upslope after the last glacial maximum and a stark environmental transition. This towhee system offers a window into the potential outcomes of hybridization across a dynamic landscape including the creation of novel genomic and phenotypic combinations and incipient hybrid lineages.more » « less
-
Abstract AimIntroduced species offer insight on whether and how organisms can shift their ecological niches during translocation. The genusAmazonaoffers a clear test case, where sister species Red‐crowned (A. viridigenalis) and Lilac‐crowned Parrots (A. finschi) have established breeding populations in southern California following introduction via the pet trade from Mexico where they do not coexist. After establishment in the 1980s, introduced population sizes have increased, with mixed species flocks found throughout urban Los Angeles. Here, we investigate the differences between the environmental conditions of the native and introduced ranges of these now co‐occurring species. LocationSouthern California and Mexico. MethodsUsing environmental data on climate and habitat from their native and introduced ranges, we tested whether Red‐crowned and Lilac‐crowned Parrots have divergent realized niches between their native ranges, and whether each species has significantly shifted its realized niche to inhabit urban southern California. We also analysed data from Texas and Florida introductions of Red‐crowned Parrots for comparative analysis. ResultsThere are significant differences in the native‐range niches of both parrot species, but a convergence into a novel, shared environmental niche into urban southern California, characterized by colder temperatures, less tree cover and lower rainfall. Texas and Florida Red‐crowned Parrots also show evidence for niche shifts with varying levels of niche conservatism through the establishment of somewhat different realized niches. Main ConclusionsDespite significant niche shifts, introduced parrots are thriving, suggesting a broad fundamental niche and an ability to exploit urban resources. Unique niche shifts in different U.S. introductions indicate thatAmazonaparrots can adapt to diverse environmental conditions, with cities offering a resource niche and the timing of introduction playing a crucial role. Cities can potentially serve as refugia for threatened parrot species, but the risk of hybridization between species emphasizes the need for ongoing monitoring and genetic investigations.more » « less
-
Abstract The Great American Biotic Interchange (GABI) was a key biogeographic event in the history of the Americas. The rising of the Panamanian land bridge ended the isolation of South America and ushered in a period of dispersal, mass extinction, and new community assemblages, which sparked competition, adaptation, and speciation. Diversification across many bird groups, and the elevational zonation of others, ties back to events triggered by the GABI. But the exact timing of these events is still being revealed, with recent studies suggesting a much earlier time window for faunal exchange, perhaps as early as 20 million years ago (Mya). Using a time‐calibrated phylogenetic tree, we show that the jay genusCyanolycais emblematic of bird dispersal trends, with an early, pre‐land bridge dispersal from Mesoamerica to South America 6.3–7.3 Mya, followed by a back‐colonization ofC. cucullatato Mesoamerica 2.3–4.8 Mya, likely after the land bridge was complete. AsCyanolycaspecies came into contact in Mesoamerica, they avoided competition due to a prior shift to lower elevation in the ancestor ofC. cucullata. This shift allowedC. cucullatato integrate itself into the Mesoamerican highland avifauna, which our time‐calibrated phylogeny suggests was already populated by higher‐elevation, congeneric dwarf‐jays (C. argentigula,C. pumilo,C. mirabilis, andC. nanus). The outcome of these events and fortuitous elevational zonation was thatC. cucullatacould continue colonizing new highland areas farther north during the Pleistocene. Resultingly, fourC. cucullatalineages became isolated in allopatric, highland regions from Panama to Mexico, diverging in genetics, morphology, plumage, and vocalizations. At least two of these lineages are best described as species (C. mitrataandC. cucullata). Continued study will further document the influence of the GABI and help clarify how dispersal and vicariance shaped modern‐day species assemblages in the Americas.more » « less
An official website of the United States government
