skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tsanikidis, Christos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    In this paper, we consider the problem of scheduling real-time traffic in wireless networks under a conflict-graph interference model and single-hop traffic. The objective is to guarantee that at least a certain fraction of packets of each link are delivered within their deadlines, which is referred to as delivery ratio. This problem has been studied before under restrictive frame-based traffic models, or greedy maximal scheduling schemes like LDF (Largest-Deficit First) that can lead to poor delivery ratio for general traffic patterns. In this paper, we pursue a different approach through randomization over the choice of maximal links that can transmit at each time. We design randomized policies in collocated networks, multipartite networks, and general networks, that can achieve delivery ratios much higher than what is achievable by LDF. Further, our results apply to traffic (arrival and deadline) processes that evolve as positive recurrent Markov chains. Hence, this work is an improvement with respect to both efficiency and traffic assumptions compared to the past work. We further present extensive simulation results over various traffic patterns and interference graphs to illustrate the gains of our randomized policies over LDF variants. 
    more » « less