Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.X-ray surveys combined with optical follow-up observations are used to generate complete flux-limited samples of the main X-ray emitting source classes. eROSITA on the Spectrum-Roentgen-Gamma mission provides sufficient sensitivity to build significantly enhanced samples of rare X-ray emitting sources. Aims.We strive to identify and classify compact white dwarf binaries, cataclysmic variables (CVs), and related objects, which were detected in the sky area of eFEDS, the eROSITA Final Equatorial Depths Survey, and they were observed in the plate program of SDSS-V. Methods.Compact white dwarf binaries were selected from spectra obtained in the early SDSS-V plate program. A dedicated set of SDSS plate observations were carried out in the eFEDS field, providing spectroscopic classifications for a significant fraction of the optically bright end (r< 22.5) of the X-ray sample. The identification and subclassification rests on visual inspections of the SDSS spectra, spectral variability, color-magnitude and color-color diagrams involving optical and X-ray fluxes, optical variability, and literature work. Results.Upon visual inspection of SDSS spectra and various auxiliary data products, we have identified 26 accreting compact white dwarf binaries (aCWDBs) in eFEDS, of which 24 are proven X-ray emitters. Among those 26 objects, there are 12 dwarf novae, three WZ Sge-like disk-accreting nonmagnetic CVs with low accretion rates, five likely nonmagnetic high accretion rate nova-like CVs, two magnetic CVs of the polar subcategory, and three double degenerates (AM CVn objects). Period bouncing candidates and magnetic systems are rarer than expected in this sample, but it is too small for a thorough statistical analysis. Fourteen of the systems are new discoveries, of which five are fainter than theGaiamagnitude limit. Thirteen aCWDBs have measured or estimated orbital periods, of which five were presented here. Through a Zeeman analysis, we revise the magnetic field estimate of the polar system J0926+0105, which is likely a low-field polar atB= 16 MG. We quantified the success of X-ray versus optical/UV selection of compact white dwarf binaries which will be relevant for the full SDSS-V survey. We also identified six white dwarf main sequence (WDMS) systems, among them there is one confirmed pre-CV at an orbital period of 17.6 h and another pre-CV candidate. Conclusions.This work presents successful initial work in building large samples of all kinds of accreting and X-ray emitting compact white dwarf binaries that will be continued over the full hemisphere in the years to come.more » « less
-
Context.The early-type galaxy SDSS J133519.91+072807.4 (hereafter SDSS1335+0728), which had exhibited no prior optical variations during the preceding two decades, began showing significant nuclear variability in theZwickyTransient Facility (ZTF) alert stream from December 2019 (as ZTF19acnskyy). This variability behaviour, coupled with the host-galaxy properties, suggests that SDSS1335+0728 hosts a ∼106 M⊙black hole (BH) that is currently in the process of “turning on”. Aims.We present a multi-wavelength photometric analysis and spectroscopic follow-up performed with the aim of better understanding the origin of the nuclear variations detected in SDSS1335+0728. Methods.We used archival photometry (from WISE, 2MASS, SDSS, GALEX, eROSITA) and spectroscopic data (from SDSS and LAMOST) to study the state of SDSS1335+0728 prior to December 2019, and new observations fromSwift, SOAR/Goodman, VLT/X-shooter, and Keck/LRIS taken after its turn-on to characterise its current state. We analysed the variability of SDSS1335+0728 in the X-ray/UV/optical/mid-infrared range, modelled its spectral energy distribution prior to and after December 2019, and studied the evolution of its UV/optical spectra. Results.From our multi-wavelength photometric analysis, we find that: (a) since 2021, the UV flux (fromSwift/UVOT observations) is four times brighter than the flux reported by GALEX in 2004; (b) since June 2022, the mid-infrared flux has risen more than two times, and theW1 − W2 WISE colour has become redder; and (c) since February 2024, the source has begun showing X-ray emission. From our spectroscopic follow-up, we see that (i) the narrow emission line ratios are now consistent with a more energetic ionising continuum; (ii) broad emission lines are not detected; and (iii) the [OIII] line increased its flux ∼3.6 years after the first ZTF alert, which implies a relatively compact narrow-line-emitting region. Conclusions.We conclude that the variations observed in SDSS1335+0728 could be either explained by a ∼106 M⊙AGN that is just turning on or by an exotic tidal disruption event (TDE). If the former is true, SDSS1335+0728 is one of the strongest cases of an AGN observed in the process of activating. If the latter were found to be the case, it would correspond to the longest and faintest TDE ever observed (or another class of still unknown nuclear transient). Future observations of SDSS1335+0728 are crucial to further understand its behaviour.more » « less
-
ABSTRACT We present second epoch optical spectra for 30 changing-look (CL) candidates found by searching for Type-1 optical variability in a sample of active galactic nuclei (AGNs) spectroscopically classified as Type 2. We use a random-forest-based light-curve classifier and spectroscopic follow-up, confirming 50 per cent of candidates as turning-on CLs. In order to improve this selection method and to better understand the nature of the not-confirmed CL candidates, we perform a multiwavelength variability analysis including optical, mid-infrared (MIR), and X-ray data, and compare the results from the confirmed and not-confirmed CLs identified in this work. We find that most of the not-confirmed CLs are consistent with weak Type 1s dominated by host-galaxy contributions, showing weaker optical and MIR variability. On the contrary, the confirmed CLs present stronger optical fluctuations and experience a long (from five to ten years) increase in their MIR fluxes and the colour W1–W2 over time. In the 0.2–2.3 keV band, at least four out of 11 CLs with available SRG/eROSITA detections have increased their flux in comparison with archival upper limits. These common features allow us to select the most promising CLs from our list of candidates, leading to nine sources with similar multiwavelength photometric properties to our CL sample. The use of machine learning algorithms with optical and MIR light curves will be very useful to identify CLs in future large-scale surveys.more » « less
An official website of the United States government
