skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Tucker, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. The BICEP/Keck (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the “B-mode” polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor-to-scalar ratio, r, and thus the energy scale of inflation. Having set the most sensitive constraints to-date on r, σ(r) = 0.009 (r0.05 < 0.036, 95% C.L.) using data through the 2018 observing season (“BK18”), the BICEP/Keck program has continued to improve its dataset in the years since. We give a brief overview of the BK program and the “BK18” result before discussing the program’s ongoing efforts, including the deployment and performance of the Keck Array’s successor instrument, BICEP Array, improvements to data processing and internal consistency testing, new techniques such as delensing, and how those will ultimately serve to allow BK reach σ(r) ≲ 0.003 using data through the 2027 observing season. 
    more » « less
    Free, publicly-accessible full text available May 29, 2025
  3. Abstract

    We present a flare star catalog from 4 yr of nontargeted millimeter-wave survey data from the South Pole Telescope (SPT). The data were taken with the SPT-3G camera and cover a 1500 deg2region of the sky from 20h40m0sto 3h20m0sin right ascension and from −42° to −70° in declination. This region was observed on a nearly daily cadence from 2019 to 2022 and chosen to avoid the plane of the galaxy. A short-duration transient search of this survey yields 111 flaring events from 66 stars, increasing the number of both flaring events and detected flare stars by an order of magnitude from the previous SPT-3G data release. We provide cross-matching to Gaia DR3, as well as matches to X-ray point sources found in the second ROSAT all-sky survey. We have detected flaring stars across the main sequence, from early-type A stars to M dwarfs, as well as a large population of evolved stars. These stars are mostly nearby, spanning 10–1000 pc in distance. Most of the flare spectral indices are constant or gently rising as a function of frequency at 95/150/220 GHz. The timescale of these events can range from minutes to hours, and the peakνLνluminosities range from 1027to 1031erg s−1in the SPT-3G frequency bands.

     
    more » « less
  4. Time-division multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high-frequency receivers, observing at 150 GHz and 220/270 GHz, will have 7776 TES detectors tiled on the focal plane. The constraints set by these two receivers required a redesign of the warm readout electronics. The new version of the standard multichannel electronics, developed and built at the University of British Columbia, is presented here for the first time. BICEP Array operates time-division multiplexing readout technology to the limits of its capabilities in terms of multiplexing rate, noise and cross talk, and applies them in rigorously demanding scientific application requiring extreme noise performance and systematic error control. Future experiments like CMB-S4 plan to use TES bolometers with time-division/SQUID-based readout for an even larger number of detectors. 
    more » « less
    Free, publicly-accessible full text available April 24, 2025
  5. null (Ed.)
  6. null (Ed.)
  7. The Background Imaging of Cosmic Extragalactic Polarization (BICEP)/Keck (BK) collaboration is currently leading the quest for the highest-sensitivity measurements of the polarized cosmic microwave background (CMB) anisotropies on a degree scale with a series of cryogenic telescopes, of which BICEP Array (BA) is the latest Stage-3 upgrade with a total of ∼ 32,000 detectors. The instrument comprises 4 receivers spanning 30-270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole Station in late 2019. The full complement of receivers is forecast to set the most stringent constraints on the tensor-to-scalar ratio r. Building on these advances, the overarching small-aperture telescope concept is already being used as the reference for further Stage-4 experiment design. This paper describes the development of the BICEP Array 150 GHz detector module and its fabrication requirements, with highlights on the high-density time division multiplexing (TDM) design of the cryogenic circuit boards. The low-impedance wiring required between the detectors and the first stage of superconducting quantum interference device amplifiers is crucial to maintaining a stable bias current on the detectors. A novel multi-layer FR4 Printed Circuit Board with superconducting traces, capable of reading out up to 648 detectors, is detailed along with its validation tests. An ultra-high-density TDM detector module concept we developed for a CMB-S4-like experiment that allows up to 1920 detectors to be read out is also presented. TDM has been chosen as the detector readout technology for the Cosmic Microwave Background Stage-4 (CMB-S4) experiment based on its proven low-noise performance, predictable costs, and overall maturity of the architecture. The heritage for TDM is rooted in mm- and sub-mm-wave experiments dating back 20 years and has since evolved to support a multiplexing factor of 64x in Stage-3 experiments. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  8. null (Ed.)
    Alpine glaciers in the low- and mid-latitudes respond more quickly than large polar ice sheets to changes in temperature, precipitation, cloudiness, humidity, and radiation. Many high-altitude glaciers are monitored by ground observations, aerial photography, and satellite-borne sensors. Regardless of latitude and elevation, nearly all nonpolar glaciers and ice caps are undergoing mass loss, which compromises the records of past climate preserved within them. Almost without exception, the retreat of these ice fields is persistent, and a very important driver is the recent warming of the tropical troposphere and oceans. Here we present data on the decrease in the surface area of four glaciers from low- to mid-latitude mountainous regions: the Andes of Peru and northern Bolivia, equatorial east Africa, equatorial Papua, Indonesia, and the western Tibetan Plateau. Climate records based on oxygen isotopic ratios (δ18O) measured in ice cores drilled from several glaciers in these regions reveal that the records from elevations below ~6000 m above sea level have been substantially modified by seasonal melting and the movement of meltwater through porous upper firn layers. Fortunately, δ18O records recovered from higher altitude sites still contain well-preserved seasonal variations to the surface; however, the projected increase in the rate of atmospheric warming implies that climate records from higher elevation glaciers will eventually also be degraded. A long-term ice core collection program on the Quelccaya ice cap in Peru, Earth’s largest tropical ice cap, illustrates that the deterioration of its climate record is concomitant with the increase in mid-troposphere temperatures. The melting ice and resulting growth of proglacial lakes presents an imminent hazard to nearby communities. The accelerating melting of glaciers, if sustained, ensures the eventual loss of unique and irreplaceable climate histories, as well as profound economic, agricultural, and cultural impacts on local communities. 
    more » « less