skip to main content

Search for: All records

Creators/Authors contains: "Tucker, M. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We analyse new multifilter Hubble Space Telescope (HST) photometry of the normal Type Ia supernova (SN Ia) 2011fe out to ≈2400 d after maximum light, the latest observations to date of a SN Ia. We model the pseudo-bolometric light curve with a simple radioactive decay model and find energy input from both 57Co and 55Fe are needed to power the late-time luminosity. This is the first detection of 55Fe in a SN Ia. We consider potential sources of contamination such as a surviving companion star or delaying the deposition time-scale for 56Co positrons but these scenarios are ultimately disfavored. The relative isotopic abundances place direct constraints on the burning conditions experienced by the white dwarf (WD). Additionally, we place a conservative upper limit of <10−3 M⊙ on the synthesized mass of 44Ti. Only two classes of explosion models are currently consistent with all observations of SN 2011fe: (1) the delayed detonation of a low-ρc, near-MCh (1.2–1.3 M⊙) WD, or (2) a sub-MCh (1.0–1.1 M⊙) WD experiencing a thin-shell double detonation.

    more » « less
  2. Abstract

    We present a JWST mid-infrared (MIR) spectrum of the underluminous Type Ia Supernova (SN Ia) 2022xkq, obtained with the medium-resolution spectrometer on the Mid-Infrared Instrument (MIRI) ∼130 days post-explosion. We identify the first MIR lines beyond 14μm in SN Ia observations. We find features unique to underluminous SNe Ia, including the following: isolated emission of stable Ni, strong blends of [Tiii], and large ratios of singly ionized to doubly ionized species in both [Ar] and [Co]. Comparisons to normal-luminosity SNe Ia spectra at similar phases show a tentative trend between the width of the [Coiii] 11.888μm feature and the SN light-curve shape. Using non-LTE-multi-dimensional radiation hydro simulations and the observed electron capture elements, we constrain the mass of the exploding WD. The best-fitting model shows that SN 2022xkq is consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass WD (MWD≈1.37M) of high central density (ρc≥ 2.0 × 109g cm−3) seen equator-on, which producedM(56Ni) =0.324MandM(58Ni) ≥0.06M. The observed line widths are consistent with the overall abundance distribution; and the narrow stable Ni lines indicate little to no mixing in the central regions, favoring central ignition of subsonic carbon burning followed by an off-center deflagration-to-detonation transition beginning at a single point. Additional observations may further constrain the physics revealing the presence of additional species including Cr and Mn. Our work demonstrates the power of using the full coverage of MIRI in combination with detailed modeling to elucidate the physics of SNe Ia at a level not previously possible.

    more » « less

    NGC 5273 is a known optical and X-ray variable AGN. We analyse new and archival IR, optical, UV, and X-ray data in order to characterize its long-term variability from 2000–2022. At least one optical changing-look event occurred between 2011 and 2014 when the AGN changed from a Type 1.8/1.9 Seyfert to a Type 1. It then faded considerably at all wavelengths, followed by a dramatic but slow increase in UV/optical brightness between 2021 and 2022. Near-IR (NIR) spectra in 2022 show prominent broad Paschen lines that are absent in an archival spectrum from 2010, making NGC 5273 one of the few AGNs to be observed changing-look in the NIR. We propose that NGC 5273 underwent multiple changing-look events between 2000 and 2022 – starting as a Type 1.8/1.9, NGC 5273 changes-look to a Type 1 temporarily in 2002 and again in 2014, reverting back to a Type 1.8/1.9 by 2005 and 2017, respectively. In 2022, it is again a Type 1 Seyfert. We characterize the changing-look events and their connection to the dynamic accretion and radiative processes in NGC 5273 and propose that the variable luminosity (and thus, Eddington ratio) of the source is changing how the broad-line region (BLR) reprocesses the continuum emission.

    more » « less
  4. Abstract

    We present three new spectra of the nearby Type Ia supernova (SN Ia) 2011fe covering ≈480–850 days after maximum light and show that the ejecta undergoes a rapid ionization shift at ∼500 days after explosion. The prominent Feiiiemission lines at ≈4600 Å are replaced with Fei+Feiiblends at ∼4400 Å and ∼5400 Å. The ≈7300 Å feature, which is produced by [Feii]+[Niii] at ≲400 days after explosion, is replaced by broad (≈±15,000 km s−1) symmetric [Caii] emission. Models predict this ionization transition occurring ∼100 days later than what is observed, which we attribute to clumping in the ejecta. Finally, we use the nebular-phase spectra to test several proposed progenitor scenarios for SN 2011fe. Nondetections of H and He exclude nearby nondegenerate companions, [Oi] nondetections disfavor the violent merger of two white dwarfs, and the symmetric emission-line profiles favor a symmetric explosion.

    more » « less
  5. Abstract

    We present multiwavelength photometry and spectroscopy of SN 2022jli, an unprecedented Type Ic supernova discovered in the galaxy NGC 157 at a distance of ≈ 23 Mpc. The multiband light curves reveal many remarkable characteristics. Peaking at a magnitude ofg= 15.11 ± 0.02, the high-cadence photometry reveals periodic undulations of 12.5 ± 0.2 days superimposed on the 200-day supernova decline. This periodicity is observed in the light curves from nine separate filter and instrument configurations with peak-to-peak amplitudes of ≃ 0.1 mag. This is the first time that repeated periodic oscillations, over many cycles, have been detected in a supernova light curve. SN 2022jli also displays an extreme early excess that fades over ≈25 days, followed by a rise to a peak luminosity ofLopt= 1042.1erg s−1. Although the exact explosion epoch is not constrained by data, the time from explosion to maximum light is ≳ 59 days. The luminosity can be explained by a large ejecta mass (Mej≈ 12 ± 6M) powered by56Ni, but we find it difficult to quantitatively model the early excess with circumstellar interaction and cooling. Collision between the supernova ejecta and a binary companion is a possible source of this emission. We discuss the origin of the periodic variability in the light curve, including interaction of the SN ejecta with nested shells of circumstellar matter and neutron stars colliding with binary companions.

    more » « less

    We present ultraviolet (UV) to near-infrared (NIR) observations and analysis of the nearby Type Ia supernova SN 2021fxy. Our observations include UV photometry from Swift/UVOT, UV spectroscopy from HST/STIS, and high-cadence optical photometry with the Swope 1-m telescope capturing intranight rises during the early light curve. Early B − V colours show SN 2021fxy is the first ‘shallow-silicon’ (SS) SN Ia to follow a red-to-blue evolution, compared to other SS objects which show blue colours from the earliest observations. Comparisons to other spectroscopically normal SNe Ia with HST UV spectra reveal SN 2021fxy is one of several SNe Ia with flux suppression in the mid-UV. These SNe also show blueshifted mid-UV spectral features and strong high-velocity Ca ii features. One possible origin of this mid-UV suppression is the increased effective opacity in the UV due to increased line blanketing from high velocity material, but differences in the explosion mechanism cannot be ruled out. Among SNe Ia with mid-UV suppression, SNe 2021fxy and 2017erp show substantial similarities in their optical properties despite belonging to different Branch subgroups, and UV flux differences of the same order as those found between SNe 2011fe and 2011by. Differential comparisons to multiple sets of synthetic SN Ia UV spectra reveal this UV flux difference likely originates from a luminosity difference between SNe 2021fxy and 2017erp, and not differing progenitor metallicities as suggested for SNe 2011by and 2011fe. These comparisons illustrate the complicated nature of UV spectral formation, and the need for more UV spectra to determine the physical source of SNe Ia UV diversity.

    more » « less
  7. Abstract

    We present the discovery and extensive follow-up of a remarkable fast-evolving optical transient, AT 2022aedm, detected by the Asteroid Terrestrial impact Last Alert Survey (ATLAS). In the ATLASoband, AT 2022aedm exhibited a rise time of 9 ± 1 days, reaching a luminous peak withMg≈ −22 mag. It faded by 2 mag in thegband during the next 15 days. These timescales are consistent with other rapidly evolving transients, though the luminosity is extreme. Most surprisingly, the host galaxy is a massive elliptical with negligible current star formation. Radio and X-ray observations rule out a relativistic AT 2018cow–like explosion. A spectrum in the first few days after explosion showed short-lived Heiiemission resembling young core-collapse supernovae, but obvious broad supernova features never developed; later spectra showed only a fast-cooling continuum and narrow, blueshifted absorption lines, possibly arising in a wind withv≈ 2700 km s−1. We identify two further transients in the literature (Dougie in particular, as well as AT 2020bot) that share similarities in their luminosities, timescales, color evolution, and largely featureless spectra and propose that these may constitute a new class of transients: luminous fast coolers. All three events occurred in passive galaxies at offsets of ∼4–10 kpc from the nucleus, posing a challenge for progenitor models involving massive stars or black holes. The light curves and spectra appear to be consistent with shock breakout emission, though this mechanism is usually associated with core-collapse supernovae. The encounter of a star with a stellar-mass black hole may provide a promising alternative explanation.

    more » « less
  8. ABSTRACT We present Multi-Unit Spectroscopic Explorer (MUSE) integral-field spectroscopy of ESO 253−G003, which hosts a known active galactic nucleus (AGN) and the periodic nuclear transient ASASSN-14ko, observed as part of the All-weather MUse Supernova Integral-field of Nearby Galaxies survey. The MUSE observations reveal that the inner region hosts two AGN separated by $1.4\pm 0.1~\rm {kpc}$ (≈1${_{.}^{\prime\prime}}$7). The brighter nucleus has asymmetric broad permitted emission-line profiles and is associated with the archival AGN designation. The fainter nucleus does not have a broad emission-line component but exhibits other AGN characteristics, including $\hbox{$v_{\rm {FWHM}}$} \approx 700~\hbox{km~s$^{-1}$}$ forbidden line emission, $\rm{\log _{10}(\rm{[O\,\small {III}]}/\rm{H\beta})} \approx 1.1$, and high-excitation potential emission lines, such as [Fe vii] λ6086 and He ii λ4686. The host galaxy exhibits a disturbed morphology with large kpc-scale tidal features, potential outflows from both nuclei, and a likely superbubble. A circular relativistic disc model cannot reproduce the asymmetric broad emission-line profiles in the brighter nucleus, but two non-axisymmetric disc models provide good fits to the broad emission-line profiles: an elliptical disc model and a circular disc + spiral arm model. Implications for the periodic nuclear transient ASASSN-14ko are discussed. 
    more » « less
  9. null (Ed.)
  10. Abstract

    We present optical, infrared, ultraviolet, and radio observations of SN 2022xkq, an underluminous fast-declining Type Ia supernova (SN Ia) in NGC 1784 (D≈ 31 Mpc), from <1 to 180 days after explosion. The high-cadence observations of SN 2022xkq, a photometrically transitional and spectroscopically 91bg-like SN Ia, cover the first days and weeks following explosion, which are critical to distinguishing between explosion scenarios. The early light curve of SN 2022xkq has a red early color and exhibits a flux excess that is more prominent in redder bands; this is the first time such a feature has been seen in a transitional/91bg-like SN Ia. We also present 92 optical and 19 near-infrared (NIR) spectra, beginning 0.4 days after explosion in the optical and 2.6 days after explosion in the NIR. SN 2022xkq exhibits a long-lived Ci1.0693μm feature that persists until 5 days post-maximum. We also detect Ciiλ6580 in the pre-maximum optical spectra. These lines are evidence for unburnt carbon that is difficult to reconcile with the double detonation of a sub-Chandrasekhar mass white dwarf. No existing explosion model can fully explain the photometric and spectroscopic data set of SN 2022xkq, but the considerable breadth of the observations is ideal for furthering our understanding of the processes that produce faint SNe Ia.

    more » « less