- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cannon, Sarah (2)
-
Pegden, Wesley (2)
-
Tucker-Foltz, Jamie (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We prove that a polynomial fraction of the set of $$k$$-component forests in the $$m \times n$$ grid graph have equal numbers of vertices in each component, for any constant $$k$$. This resolves a conjecture of Charikar, Liu, Liu, and Vuong, and establishes the first provably polynomial-time algorithm for (exactly or approximately) sampling balanced grid graph partitions according to the spanning tree distribution, which weights each $$k$$-partition according to the product, across its $$k$$ pieces, of the number of spanning trees of each piece. Our result follows from a careful analysis of the probability a uniformly random spanning tree of the grid can be cut into balanced pieces. Beyond grids, we show that for a broad family of lattice-like graphs, we achieve balance up to any multiplicative $$(1 \pm \varepsilon)$$ constant with constant probability. More generally, we show that, with constant probability, components derived from uniform spanning trees can approximate any given partition of a planar region specified by Jordan curves. This implies polynomial-time algorithms for sampling approximately balanced tree-weighted partitions for lattice-like graphs. Our results have applications to understanding political districtings, where there is an underlying graph of indivisible geographic units that must be partitioned into $$k$$ population-balanced connected subgraphs. In this setting, tree-weighted partitions have interesting geometric properties, and this has stimulated significant effort to develop methods to sample them.more » « less
-
Cannon, Sarah; Pegden, Wesley; Tucker-Foltz, Jamie (, ACM)