skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Tufts, Danielle M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The range of hosts a pathogen can infect is a key trait, influencing human disease risk and reservoir host infection dynamics. Borrelia burgdorferi sensu stricto (Bb), an emerging zoonotic pathogen, causes Lyme disease and is widely considered a host generalist, commonly infecting mammals and birds. Yet the extent of intraspecific variation in Bb host breadth, its role in determining host competence, and potential implications for human infection remain unclear. We conducted a long-term study of Bb diversity, defined by the polymorphic ospC locus, across white-footed mice, passerine birds, and tick vectors, leveraging long-read amplicon sequencing. Our results reveal strong variation in host breadth across Bb genotypes, exposing a spectrum of genotype-specific host-adapted phenotypes. We found support for multiple niche polymorphism, maintaining Bb diversity in nature and little evidence of temporal shifts in genotype dominance, as would be expected under negative frequency-dependent selection. Passerine birds support the circulation of several human-invasive strains (HISs) in the local tick population and harbor greater Bb genotypic diversity compared with white-footed mice. Mouse-adapted Bb genotypes exhibited longer persistence in individual mice compared with nonadapted genotypes. Genotype communities infecting individual mice preferentially became dominated by mouse-adapted genotypes over time. We posit that intraspecific variation in Bb host breadth and adaptation helps maintain overall species fitness in response to transmission by a generalist vector.

     
    more » « less
  2. Predicting pathogen emergence and spillover risk requires understanding the determinants of a pathogens' host range and the traits involved in host competence. While host competence is often considered a fixed species-specific trait, it may be variable if pathogens diversify across hosts. Balancing selection can lead to maintenance of pathogen polymorphisms (multiple-niche-polymorphism; MNP). The causative agent of Lyme disease, Borrelia burgdorferi ( Bb ), provides a model to study the evolution of host adaptation, as some Bb strains defined by their outer surface protein C ( ospC ) genotype, are widespread in white-footed mice and others are associated with non-rodent vertebrates (e.g. birds). To identify the mechanisms underlying potential strain × host adaptation, we infected American robins and white-footed mice, with three Bb strains of different ospC genotypes. Bb burdens varied by strain in a host-dependent fashion, and strain persistence in hosts largely corresponded to Bb survival at early infection stages and with transmission to larvae (i.e. fitness). Early survival phenotypes are associated with cell adhesion, complement evasion and/or inflammatory and antibody-mediated removal of Bb, suggesting directional selective pressure for host adaptation and the potential role of MNP in maintaining OspC diversity. Our findings will guide future investigations to inform eco-evolutionary models of host adaptation for microparasites. 
    more » « less
  3. Skare, Jon T. (Ed.)
    Pathogens possess the ability to adapt and survive in some host species but not in others–an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi , B . afzelii , and B . garinii , vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations. 
    more » « less
  4. Summary

    Lyme borreliosis is caused by multiple species of the spirochete bacteriaBorrelia burgdorferisensu lato. The spirochetes are transmitted by ticks to vertebrate hosts, including small‐ and medium‐sized mammals, birds, reptiles, and humans. Strain‐to‐strain variation in host‐specific infectivity has been documented, but the molecular basis that drives this differentiation is still unclear. Spirochetes possess the ability to evade host immune responses and colonize host tissues to establish infection in vertebrate hosts. In turn, hosts have developed distinct levels of immune responses when invaded by different species/strains of Lyme borreliae. Similarly, the ability of Lyme borreliae to colonize host tissues varies among different spirochete species/strains. One potential mechanism that drives this strain‐to‐strain variation of immune evasion and colonization is the polymorphic outer surface proteins produced by Lyme borreliae. In this review, we summarize research on strain‐to‐strain variation in host competence and discuss the evidence that supports the role of spirochete‐produced protein polymorphisms in driving this variation in host specialization. Such information will provide greater insights into the adaptive mechanisms driving host and Lyme borreliae association, which will lead to the development of interventions to block pathogen spread and eventually reduce Lyme borreliosis health burden.

     
    more » « less