skip to main content

Search for: All records

Creators/Authors contains: "Tullsen, Dean M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Heterogeneous architectures have become increasingly common. From co-packaging small and large cores, to GPUs alongside CPUs, to general-purpose heterogeneous-ISA architectures with cores implementing different ISAs. As diversity of execution cores grows, predictive models become of paramount importance for scheduling and resource allocation. In this paper, we investigate the capabilities of performance predictors in a heterogeneous-ISA setting, as well as the predictors’ effects on scheduler quality. We follow an unbiased feature selection methodology to identify the optimal set of features for this task, instead of pre-selecting features before training. Finally, we incorporate our findings in ML-based schedulers and evaluate their sensitivity to the underlying system’s level of heterogeneity. We show our schedulers to perform within 2-11% of an oracular scheduler across a variety of underlying heterogeneous-ISA multicore systems without modification.