Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Larval net-spinning caddisflies (Hydropsychidae) function as ecosystem engineers in streams where they construct protective retreats composed of organic and inorganic material affixed with silk filtration nets that alter streambed hydrology. We hypothesized that hydropsychid bio-structures (retreats, nets) are microhabitats for microbes with oxygen-sensitive metabolisms, and therefore increase the metabolic heterogeneity of streambed microbial assemblages. Metagenomic and 16 S rRNA gene amplicon analysis of samples from a montane stream (Cherry Creek, Montana, USA) revealed that microbiomes of caddisfly bio-structures are taxonomically and functionally distinct from those of the immediately adjacent rock biofilm (~2 cm distant) and enriched in microbial taxa with established roles in denitrification, nitrification, and methane production. Genes for denitrification, high oxygen affinity terminal oxidases, hydrogenases, oxidative dissimilatory sulfite reductases, and complete ammonia oxidation are significantly enriched in caddisfly bio-structures. The results suggest a novel ecosystem engineering effect of caddisflies through the creation of low-oxygen, denitrifier-enriched niches in the stream microbiome. Facilitation of metabolic diversity in streambeds may be a largely unrecognized mechanism by which caddisflies alter whole-stream biogeochemistry.more » « less
-
Abstract Ecosystem engineers can generate hotspots of ecological structure and function by facilitating the aggregation of both resources and consumers. However, nearly all examples of such engineered hotspots come from long‐lived foundation species, such as marine and freshwater mussels, intertidal cordgrasses, and alpine cushion plants, with less attention given to small‐bodied and short‐lived animals. Insects often have rapid life cycles and high population densities and are among the most diverse and ubiquitous animals on earth. Although these taxa have the potential to generate hotspots and heterogeneity comparable to that of foundation species, few studies have examined this possibility. We conducted a mesocosm experiment to examine the degree to which a stream insect ecosystem engineer, the net‐spinning caddisfly (Tricoptera:Hydropsychidae), creates hotspots by facilitating invertebrate community assembly. Our experiment used two treatments: (1) stream benthic habitat with patches of caddisfly engineers present and (2) a control treatment with no caddisflies present. We show that compared to controls, caddisflies increased local resource availability measured as particulate organic matter (POM) by 43%, ecosystem respiration (ER) by 70%, and invertebrate density, biomass, and richness by 96%, 244%, and 72%, respectively. These changes resulted in increased spatial variation of POM by 25%, invertebrate density by 76%, and ER by 29% compared to controls, indicating a strong effect of caddisflies on ecological heterogeneity. We found a positive relationship between invertebrate density and ammonium concentration in the caddisfly treatment, but no such relationship in the control, indicating that either caddisflies themselves or the invertebrate aggregations they create increased nutrient availability. When accounting for the amount of POM, caddisfly treatments increased invertebrate density by 48% and richness by 40% compared to controls, suggesting that caddisflies may also enhance the nutritional quality of resources for the invertebrate assemblage. The caddisfly treatment also increased the rate of ecosystem respiration as a function of increasing POM compared to the control. Our study demonstrates that insect ecosystem engineers can generate heterogeneity by concentrating local resources and consumers, with consequences for carbon and nutrient cycling.more » « less
An official website of the United States government
