skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tung, Tze-Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Precise synchronisation of transmitters and receivers is particularly challenging in diffusive molecular communication environments. To this end, a point-to-point molecular communication system is examined wherein the design of the transceiver offers resilience to synchronisation errors. In particular, the development of a sequential probability ratio test-based detector, which allows for additional observations in the presence of uncertainty due to mis-synchronisation at the receiver, and a modulation design which is optimised for this receiver strategy, is considered. The structure of the probability of molecules hitting a receiver within a particular time slot is exploited. An approximate maximum log-likelihood estimator for the synchronisation error is derived and the Cramér-Rao bound (CRB) computed, to show that the performance of the proposed estimator is close to the CRB at low transmission rates. The proposed receiver and modulation designs achieve strongly improved asynchronous detection performance for the same data rate as a decision feedback based receiver by a factor of 3 to 5 on average. 
    more » « less
  2. Achieving precise synchronisation between transmitters and receivers is particularly challenging in diffusive molecular communication environments. To this end, pointto-point molecular communication system design is examined wherein synchronisation errors are explicitly considered. Two transceiver design questions are considered: the development of a sequential probability ratio test-based detector which allows for additional observations in the presence of uncertainty due to miss-ynchronisation at the receiver, and a modulation design which is optimised for this receiver strategy. The modulation is based on optimising an approximation for the probability of error for the detection strategy and directly exploits the structure of the probability of molecules hitting a receiver within a particular time slot. The proposed receiver and modulation designs achieve strongly improved asynchronous detection performance for the same data rate as a decision feedback based receiver by a factor of 1/2. 
    more » « less