skip to main content

Search for: All records

Creators/Authors contains: "Turetsky, Merritt R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Key message Black spruce ( Picea mariana (Mill.) B.S.P.) has historically self-replaced following wildfire, but recent evidence suggests that this is changing. One factor could be negative impacts of intensifying fire activity on black spruce seed rain. We investigated this by measuring black spruce seed rain and seedling establishment. Our results suggest that increases in fire activity could reduce seed rain meaning reductions in black spruce establishment. Context Black spruce is an important conifer in boreal North America that develops a semi-serotinous, aerial seedbank and releases a pulse of seeds after fire. Variation in postfire seed rain has important consequences for black spruce regeneration and stand composition. Aims We explore the possible effects of changes in fire regime on the abundance and viability of black spruce seeds following a very large wildfire season in the Northwest Territories, Canada (NWT). Methods We measured postfire seed rain over 2 years at 25 black spruce-dominated sites and evaluated drivers of stand characteristics and environmental conditions on total black spruce seed rain and viability. Results We found a positive relationship between black spruce basal area and total seed rain. However, at high basal areas, this increasing rate of seed rain was not maintained.more »Viable seed rain was greater in stands that were older, closer to unburned edges, and where canopy combustion was less severe. Finally, we demonstrated positive relationships between seed rain and seedling establishment, confirming our measures of seed rain were key drivers of postfire forest regeneration. Conclusion These results indicate that projected increases in fire activity will reduce levels of black spruce recruitment following fire.« less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Shifts in plant functional groups associated with climate change have the potential to influence peatland carbon storage by altering the amount and composition of organic matter available to aquatic microbial biofilms. The goal of this study was to evaluate the potential for plant subsidies to regulate ecosystem carbon flux (CO2) by governing the relative proportion of primary producers (microalgae) and heterotrophic decomposers (heterotrophic bacteria) during aquatic biofilm development in an Alaskan fen. We evaluated biofilm composition and CO2flux inside mesocosms with and without nutrients (both nitrogen and phosphorus), organic carbon (glucose), and leachates from common peatland plants (moss, sedge, shrub, horsetail). Experimental mesocosms were exposed to either natural sunlight or placed under a dark canopy to evaluate the response of decomposers to nutrients and carbon subsidies with and without algae, respectively. Algae were limited by inorganic nutrients and heterotrophic bacteria were limited by organic carbon. The quality of organic matter varied widely among plants and leachate nutrient content, more so than carbon quality, influenced biofilm composition. By alleviating nutrient limitation of algae, plant leachates shifted the biofilm community toward autotrophy in the light-transparent treatments, resulting in a significant reduction in CO2emissions compared to the control. Without the counterbalance frommore »algal photosynthesis, a heterotrophic biofilm significantly enhanced CO2emissions in the presence of plant leachates in the dark. These results show that plants not only promote carbon uptake directly through photosynthesis, but also indirectly through a surrogate, the phototrophic microbes.

    « less
  3. Free, publicly-accessible full text available November 1, 2023
  4. Abstract Resilience of plant communities to disturbance is supported by multiple mechanisms, including ecological legacies affecting propagule availability, species’ environmental tolerances, and biotic interactions. Understanding the relative importance of these mechanisms for plant community resilience supports predictions of where and how resilience will be altered with disturbance. We tested mechanisms underlying resilience of forests dominated by black spruce ( Picea mariana ) to fire disturbance across a heterogeneous forest landscape in the Northwest Territories, Canada. We combined surveys of naturally regenerating seedlings at 219 burned plots with experimental manipulations of ecological legacies via seed addition of four tree species and vertebrate exclosures to limit granivory and herbivory at 30 plots varying in moisture and fire severity. Black spruce recovery was greatest where it dominated pre-fire, at wet sites with deep residual soil organic layers, and fire conditions of low soil or canopy combustion and longer return intervals. Experimental addition of seed indicated all species were seed-limited, emphasizing the importance of propagule legacies. Black spruce and birch ( Betula papyrifera ) recruitment were enhanced with vertebrate exclusion. Our combination of observational and experimental studies demonstrates black spruce is vulnerable to effects of increased fire activity that erode ecological legacies. Moreover, blackmore »spruce relies on wet areas with deep soil organic layers where other species are less competitive. However, other species can colonize these areas if enough seed is available or soil moisture is altered by climate change. Testing mechanisms underlying species’ resilience to disturbance aids predictions of where vegetation will transform with effects of climate change.« less
    Free, publicly-accessible full text available June 29, 2023
  5. null (Ed.)
    Aims Climate warming in northern ecosystems is triggering widespread permafrost thaw, during which deep soil nutrients, such as nitrogen, could become available for biological uptake. Permafrost thaw shift frozen organic matter to a saturated state, which could impede nutrient uptake. We assessed whether soil nitrogen can be accessed by the deep roots of vascular plants in thermokarst bogs, potentially allowing for increases in primary productivity. Methods We conducted an ammonium uptake experiment on Carex aquatilis Wahlenb. roots excavated from thermokarst bogs in interior Alaska. Ammonium uptake capacity was compared between deep and shallow roots. We also quantified differences in root ammonium uptake capacity and plant size characteristics (plant aboveground and belowground biomass, maximum shoot height, and maximum root length) between the actively-thawing margin and the centre of each thermokarst bog as a proxy for time-following-thaw. Results Deep roots had greater ammonium uptake capacity than shallow roots, while rooting depth, but not belowground biomass, was positively correlated with aboveground biomass. Although there were no differences in aboveground biomass between the margin and centre, our findings suggest that plants can benefit from investing in the acquisition of resources near the vertical thaw front. Conclusions Our results suggest that deep roots of C.more »aquatilis can contribute to plant nitrogen uptake and are therefore able to tolerate anoxic conditions in saturated thermokarst bogs. This work furthers our understanding of how subarctic and wetland plants respond to warming and how enhanced plant biomass production might help offset ecosystem carbon release with future permafrost thaw.« less
  6. Stams, Alfons J. (Ed.)
    ABSTRACT Hydrologic shifts due to climate change will affect the cycling of carbon (C) stored in boreal peatlands. Carbon cycling in these systems is carried out by microorganisms and plants in close association. This study investigated the effects of experimentally manipulated water tables (lowered and raised) and plant functional groups on the peat and root microbiomes in a boreal rich fen. All samples were sequenced and processed for bacterial, archaeal (16S DNA genes; V4), and fungal (internal transcribed spacer 2 [ITS2]) DNA. Depth had a strong effect on microbial and fungal communities across all water table treatments. Bacterial and archaeal communities were most sensitive to the water table treatments, particularly at the 10- to 20-cm depth; this area coincides with the rhizosphere or rooting zone. Iron cyclers, particularly members of the family Geobacteraceae , were enriched around the roots of sedges, horsetails, and grasses. The fungal community was affected largely by plant functional group, especially cinquefoils. Fungal endophytes (particularly Acephala spp.) were enriched in sedge and grass roots, which may have underappreciated implications for organic matter breakdown and cycling. Fungal lignocellulose degraders were enriched in the lowered water table treatment. Our results were indicative of two main methanogen communities, amore »rooting zone community dominated by the archaeal family Methanobacteriaceae and a deep peat community dominated by the family Methanomicrobiaceae . IMPORTANCE This study demonstrated that roots and the rooting zone in boreal fens support organisms likely capable of methanogenesis, iron cycling, and fungal endophytic association and are directly or indirectly affecting carbon cycling in these ecosystems. These taxa, which react to changes in the water table and associate with roots and, particularly, graminoids, may gain greater biogeochemical influence, as projected higher precipitation rates could lead to an increased abundance of sedges and grasses in boreal fens.« less
  7. null (Ed.)
    Globally important carbon (C) stores in boreal peatlands are vulnerable to altered hydrology through changes in precipitation and runoff patterns, groundwater inputs, and a changing cryosphere. These changes can affect the extent of boreal wetlands and their ability to sequester and transform C and other nutrients. Variation in precipitation patterns has also been increasing, with greater occurrences of both flooding and drought periods. Recent work has pointed to the increasing role of algal production in regulating C cycling during flooded periods in fen peatlands, but exactly how this affects the C sink-strength of these ecosystems is poorly understood. We evaluated temporal trends in algal biomass, ecosystem C uptake and respiration (using static and floating chamber techniques), and spectroscopic indicators of DOM quality (absorbance and fluorescence) in a boreal rich-fen peatland in which water table position had been experimentally manipulated for 13 years. Superimposed on the water table treatments were natural variations in hydrology, including periods of flooding, which allowed us to examine the legacy effects of flooding on C cycling dynamics. We had a particular focus on understanding the role of algae in regulating C cycling, as the relative contribution of algal production was observed to significantly increase with flooding.more »Ecosystem measures of gross primary production (GPP) increased with algal biomass, with higher algal biomass and GPP measured in the lowered water table treatment two years after persistent flooding. Prior to flooding the lowered treatment was the weakest C sink (as CO 2 ), but this treatment became the strongest sink after flooding. The lower degree of humification (lower humification index, HIX) and yet lower bioavailability (higher spectral slope ratio, Sr) of DOM observed in the raised treatment prior to flooding persisted after two years of flooding. An index of free or bound proteins (tyrosine index, TI) increased with algal biomass across all plots during flooding, and was lowest in the raised treatment. As such, antecedent drainage conditions determined the sink-strength of this rich fen—which was also reflected in DOM characteristics. These findings indicate that monitoring flooding history and its effects on algal production could become important to estimates of C balance in northern wetlands.« less
  8. Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughoutmore »boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years.« less