skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Turlings, ed., Ted"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cycads are an ancient group of tropical gymnosperms that are toxic to most animals – including humans – though the larvae of many moths and butterflies (order: Lepidoptera) feed on cycads with apparent immunity. These insects belong to distinct lineages with varying degrees of specialisation and diverse feeding ecologies, presenting numerous opportunities for comparative studies of chemically mediated eco‐evolutionary dynamics. This review presents the first evolutionary evaluation of cycad‐feeding among Lepidoptera along with a comprehensive review of their ecology. Our analysis suggests that multiple lineages have independently colonised cycads from angiosperm hosts, yet only a few clades appear to have radiated following their transitions to cycads. Defensive traits are likely important for diversification, as many cycad specialists are warningly coloured and sequester cycad toxins. The butterfly family Lycaenidae appears to be particularly predisposed to cycad‐feeding and several cycadivorous lycaenids are warningly coloured and chemically defended. Cycad–herbivore interactions provide a promising but underutilised study system for investigating plant–insect coevolution, convergent and divergent adaptations, and the multi‐trophic significance of defensive traits; therefore the review ends by suggesting specific research gaps that would be fruitfully addressed in Lepidoptera and other cycad‐feeding insects. 
    more » « less