skip to main content


Search for: All records

Creators/Authors contains: "Turner, Alan H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A central challenge for biology is to reveal how different levels of biological variation interact and shape diversity. However, recent experimental studies have indicated that prevailing models of evolution cannot readily explain the link between micro- and macroevolution at deep timescales. Here, we suggest that this paradox could be the result of a common mechanism driving a correlated pattern of evolution. We examine the proportionality between genetic variance and patterns of trait evolution in a system whose developmental processes are well understood to gain insight into how such alignment between morphological divergence and genetic variation might be maintained over macroevolutionary time. Primate molars present a model system by which to link developmental processes to evolutionary dynamics because of the biased pattern of variation that results from the developmental architecture regulating their formation. We consider how this biased variation is expressed at the population level, and how it manifests through evolution across primates. There is a strong correspondence between the macroevolutionary rates of primate molar divergence and their genetic variation. This suggests a model of evolution in which selection is closely aligned with the direction of genetic variance, phenotypic variance, and the underlying developmental architecture of anatomical traits. 
    more » « less
  2. Abstract

    Secondarily marine tetrapod lineages have independently evolved osmoregulatory adaptations for life in salt water but inferring physiological changes in extinct marine tetrapods is difficult. The Mesozoic crocodylomorph clade Thalattosuchia is unique in having both direct evidence from natural endocasts and several proposed osteological correlates for salt exocrine glands. Here, we investigate salt gland evolution in thalattosuchians by creating endocranial reconstructions from CT scans of eight taxa (one basal thalattosuchian, one teleosauroid, two basal metriorhynchoids and four metriorhynchids) and four outgroups (three extant crocodylians and the basal crocodyliform Protosuchus) to identify salt gland osteological correlates. All metriorhynchoids show dorsolateral nasal cavity expansions corresponding to the location of nasal salt glands in natural casts, but smaller expansions in teleosauroids correspond more with the cartilaginous nasal capsule. The different sizes of these expansions suggest the following evolutionary sequence: (1) plesiomorphically small glands present in semi-aquatic teleosauroids draining through the nasal vestibule; (2) moderately sized glands in the basalmost metriorhynchoid Pelagosaurus; and (3) hypertrophied glands in the clade comprising Eoneustes and metriorhynchids, with a pre-orbital fenestra providing a novel exit for salt drainage. The large gland size inferred from basal metriorhynchoids indicates advanced osmoregulation occurred while metriorhynchoids were semi-aquatic. This pattern does not precisely fit into current models of physiological evolution in marine tetrapods and suggests a unique sequence of changes as thalattosuchians transitioned from land to sea.

     
    more » « less
  3. Abstract

    The femora of diapsids have undergone morphological changes related to shifts in postural and locomotor modes, such as the transition from plesiomorphic amniote and diapsid taxa to the apomorphic conditions related to a more erect posture within Archosauriformes. One remarkable clade of Triassic diapsids is the chameleon‐like Drepanosauromorpha. This group is known from numerous articulated but heavily compressed skeletons that have the potential to further inform early reptile femoral evolution. For the first time, we describe the three‐dimensional osteology of the femora of Drepanosauromorpha, based on undistorted fossils from the Upper Triassic Chinle Formation and Dockum Group of North America. We identify apomorphies and a combination of character states that link these femora to those in crushed specimens of drepanosauromorphs and compare our sample with a range of amniote taxa. Several characteristics of drepanosauromorph femora, including a hemispherical proximal articular surface, prominent asymmetry in the proximodistal length of the tibial condyles, and a deep intercondylar sulcus, are plesiomorphies shared with early diapsids. The femora contrast with those of most diapsids in lacking a crest‐like, distally tapering internal trochanter. They bear a ventrolaterally positioned tuberosity on the femoral shaft, resembling the fourth trochanter in Archosauriformes. The reduction of an internal trochanter parallels independent reductions in therapsids and archosauriforms. The presence of a ventrolaterally positioned trochanter is also similar to that of chameleonid squamates. Collectively, these features demonstrate a unique femoral morphology for drepanosauromorphs, and suggest an increased capacity for femoral adduction and protraction relative to most other Permo‐Triassic diapsids.

     
    more » « less
  4. Abstract

    Eopneumatosuchus colbertiCrompton and Smith, 1980, known from a single partial skull, is an enigmatic crocodylomorph from the Lower Jurassic Kayenta Formation. In spite of its unique morphology, an exceptionally pneumatic braincase, and presence during a critical time period of crocodylomorph evolution, relatively little is known about this taxon. Here, we redescribe the external cranial morphology ofE.colberti, present novel information on its endocranial anatomy, evaluate its phylogenetic position among early crocodylomorphs, and seek to better characterize its ecology. Our examination clarifies key aspects of cranial suture paths and braincase anatomy. Comparisons with related taxa (e.g.,Protosuchus haughtoni) demonstrate that extreme pneumaticity of the braincase may be more widespread in protosuchids than previously appreciated. Computed tomography scans reveal an endocranial morphology that resembles that of other early crocodylomorphs, in particular the noncrocodyliform crocodylomorphAlmadasuchus figarii. There are, however, key differences in olfactory bulb and cerebral hemisphere morphology, which demonstrate the endocranium of crocodylomorphs is not as conserved as previously hypothesized. Our phylogenetic analysis recoversE.colbertias a close relative ofProtosuchus richardsoniandEdentosuchus tienshanensis, contrasting with previous hypotheses of a sister group relationship with Thalattosuchia. Previous work suggested the inner ear has some similarities to semi‐aquatic crocodyliforms, but the phylogenetic placement ofE.colbertiamong protosuchids with a terrestrial postcranial skeletal morphology complicates paleoecological interpretation.

     
    more » « less
  5. Abstract

    Extant crocodylomorphs are semiaquatic ambush predators largely restricted to freshwater or estuarine environments, but the group is ancestrally terrestrial and inhabited a variety of ecosystems in the past. Despite its rich ecological history, little effort has focused on elucidating the historical pattern of ecological transitions in the group. Traditional views suggested a single shift from terrestrial to aquatic in the Early Jurassic. However, new fossil discoveries and phylogenetic analyses tend to imply a multiple-shift model. Here we estimate ancestral habitats across a comprehensive phylogeny and show at least three independent shifts from terrestrial to aquatic and numerous other habitat transitions. Neosuchians first invade freshwater habitats in the Jurassic, with up to four subsequent shifts into the marine realm. Thalattosuchians first appear in marine habitats in the Early Jurassic. Freshwater semiaquatic mahajangasuchids are derived from otherwise terrestrial notosuchians. Within nearly all marine groups, some species return to freshwater environments. Only twice have crocodylomorphs reverted from aquatic to terrestrial habitats, both within the crown group. All living non-alligatorid crocodylians have a keratinised tongue with salt-excreting glands, but the lack of osteological correlates for these adaptations complicates pinpointing their evolutionary origin or loss. Based on the pattern of transitions to the marine realm, our analysis suggests at least four independent origins of saltwater tolerance in Crocodylomorpha.

     
    more » « less
  6. Abstract

    Thalattosuchians represent one of the several independent transitions into the marine realm among crocodylomorphs. The extent of their aquatic adaptations ranges from the semiaquatic teleosauroids, superficially resembling extant gharials, to the almost cetacean‐like pelagic metriorhynchids. Understanding the suite of osteological, physiological, and sensory changes that accompanied this major transition has received increased attention, but is somewhat hindered by a dearth of complete three‐dimensionally preserved crania. Here, we describe the cranial and endocranial anatomy of a well‐preserved three‐dimensional specimen ofMacrospondylus bollensisfrom the Toarcian of Yorkshire, UK. The trigeminal fossa contains two similar‐sized openings separated by a thin lamina of prootic, a configuration that appears unique to a subset of teleosauroids.Macrospondylus bollensisresembles other thalattosuchians in having pyramidal semicircular canals with elongate cochlear ducts, enlarged carotid canals leading to an enlarged pituitary fossa, enlarged orbital arteries, enlarged endocranial venous sinuses, reduced pharyngotympanic sinuses, and a relatively straight brain with a hemispherical cerebral expansion. We describe for the first time the olfactory region and paranasal sinuses of a teleosauroid. A relatively large olfactory region suggests greater capacity for airborne olfaction in teleosauroids than in the more aquatically adapted metriorhynchoids. Additionally, slight swellings in the olfactory region suggest the presence of small salt glands of lower secretory capacity than those of metriorhynchoids. The presence of osteological correlates for salt glands in a teleosauroid corroborates previous hypotheses that these glands originated in the common ancestor of Thalattosuchia, facilitating their rapid radiation into the marine realm.

     
    more » « less
  7. Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood. We use computed tomography to study changes in the inner ear vestibular system, involved in sensing balance and equilibrium, as one of these groups, extinct crocodile relatives called thalattosuchians, transitioned from terrestrial ancestors into pelagic (open ocean) swimmers. We find that the morphology of the vestibular system corresponds to habitat, with pelagic thalattosuchians exhibiting a more compact labyrinth with wider semicircular canal diameters and an enlarged vestibule, reminiscent of modified and miniaturized labyrinths of other marine reptiles and cetaceans. Pelagic thalattosuchians with modified inner ears were the culmination of an evolutionary trend with a long semiaquatic phase, and their pelagic vestibular systems appeared after the first changes to the postcranial skeleton that enhanced their ability to swim. This is strikingly different from cetaceans, which miniaturized their labyrinths soon after entering the water, without a prolonged semiaquatic stage. Thus, thalattosuchians and cetaceans became secondarily aquatic in different ways and at different paces, showing that there are different routes for the same type of transition.

     
    more » « less
  8. ABSTRACT

    New discoveries at the Arlington Archosaur Site (AAS), a Cenomanian (Late Cretaceous) locality in north‐central Texas, are filling gaps in our knowledge of mid‐Cretaceous Appalachian ecosystems, which remain poorly characterized. The AAS is notable because it preserves a diverse crocodyliform record. As seen in other sites that preserve four or more crocodyliform taxa, the species present at the AAS exhibit different snout shapes and body sizes, indicating that this high diversity of sympatric species was likely sustainable due to niche partitioning. Here we describeScolomastax sahlsteinigen. et sp. nov., a new species of crocodyliform from the AAS, currently known from a partial right mandibular ramus. This species differs from other crocodyliforms in possessing features associated with durophagy or omnivory, including a shortened mandible, reduced tooth count, heterodonty, a dorsally expanded surangular, and enlarged attachments for jaw adductor muscles. Our phylogenetic analysis places this new taxon within Eusuchia as a member of Paralligatoridae and sister taxon toParalligator gradilifrons. Scolomastax sahlsteiniextends the record of paralligatorids into the Late Cretaceous of North America. This discovery represents the first appearance of this clade on the poorly known landmass of Appalachia, supporting a biogeographic connection between North America and Asia in the Early Cretaceous prior to completion of the Western Interior Seaway. However, relationships among other endemic crocodyliforms and tree instability within Paralligatoridae suggest further analysis is needed to resolve phylogenetic and biogeographic relationships (http://zoobank.org/urn:lsid:zoobank.org:pub:DC114471‐6687‐4BB5‐8FAE‐96F7278B1DAF). Anat Rec, 303:801–812, 2020. © 2019 Wiley Periodicals, Inc.

     
    more » « less