skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Turner, Andrew_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Enols—tautomers of ketones or aldehydes—are considered key intermediates in the formation of prebiotic sugars and sugar acids. Although laboratory simulation experiments suggest that enols should be ubiquitous in the interstellar medium, the underlying formation mechanisms of enols in interstellar environments are largely elusive. Here, we present the laboratory experiments on the formation of glyoxal (HCOCHO) along with its ynol tautomer acetylenediol (HOCCOH) in interstellar ice analogs composed of carbon monoxide (CO) and water (H2O) upon exposure to energetic electrons as a proxy for secondary electrons generated from Galactic cosmic rays. Utilizing tunable vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry, glyoxal and acetylenediol were detected in the gas phase during temperature-programmed desorption. Our results reveal the formation pathways of glyoxal via radical–radical recombination of two formyl (HĊO) radicals, and that of acetylenediol via keto-enol-ynol tautomerization. Due to the abundance of carbon monoxide and water in interstellar ices, glyoxal and acetylenediol are suitable candidates for future astronomical searches. Furthermore, the detection of acetylenediol in astrophysically relevant ices advances our understanding for the formation pathways of high-energy tautomers such as enols in deep space. 
    more » « less
  2. Abstract Glycinal (HCOCH2NH2) and acetamide (CH3CONH2) are simple molecular building blocks of biomolecules in prebiotic chemistry, though their origin on early Earth and formation in interstellar media remain a mystery. These molecules are formed with their tautomers in low temperature interstellar model ices upon interaction with simulated galactic cosmic rays. Glycinal and acetamide are accessed via barrierless radical‐radical reactions of vinoxy (⋅CH2CHO) and acetyl (⋅C(O)CH3), and then undergo keto‐enol tautomerization. Exploiting tunable photoionization reflectron time‐of‐flight mass spectroscopy and photoionization efficiency (PIE) curves, these results demonstrate fundamental reaction pathways for the formation of complex organics through non‐equilibrium ice reactions in cold molecular cloud environments. These molecules demonstrate an unconventional starting point for abiotic synthesis of organics relevant to contemporary biomolecules like polypeptides and cell membranes in deep space. 
    more » « less