skip to main content


Search for: All records

Creators/Authors contains: "Turner, Christopher L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Non-hydrostatic high pressure X-ray diffraction is used to study the hardness of superhard ReB2nanocrystals. All nanocrystals show less plastic deformation under load than bulk ReB2, with the smallest nanocrystals showing the most enhancement.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  2. Rhenium diboride (ReB2) exhibits high differential strain due to its puckered boron sheets that impede shear deformation. Here, we demonstrate the use of solid solution formation to enhance the Vickers hardness and differential strain of ReB2. ReB2-structured solid solutions (Re0.98Os0.02B2 and Re0.98Ru0.02B2, noted as “ReOsB2” and “ReRuB2”) were synthesized via arc-melting from the pure elements. In-situ high-pressure radial x-ray diffraction was performed in the diamond anvil cell to study the incompressibility and lattice strain of ReOsB2 and ReRuB2 up to ∼56 GPa. Both solid solutions exhibit higher incompressibility and differential strain than pure ReB2. However, while all lattice planes are strengthened by doping osmium (Os) into the ReB2 structure, only the weakest ReB2 lattice plane is enhanced with ruthenium (Ru). These results are in agreement with the Vickers hardness measurements of the two systems, where higher hardness was observed in ReOsB2. The combination of high-pressure studies with experimentally observed hardness data provides lattice specific information about the strengthening mechanisms behind the intrinsic hardness enhancement of the ReB2 system. 
    more » « less
  3. Abstract

    Supercapacitors have emerged as one of the leading energy‐storage technologies due to their short charge/discharge time and exceptional cycling stability; however, the state‐of‐the‐art energy density is relatively low. Hybrid electrodes based on transition metal oxides and carbon‐based materials are considered to be promising candidates to overcome this limitation. Herein, a rational design of graphene/VOxelectrodes is proposed that incorporates vanadium oxides with multiple oxidation states onto highly conductive graphene scaffolds synthesized via a facile laser‐scribing process. The graphene/VOxelectrodes exhibit a large potential window with a high three‐electrode specific capacitance of 1110 F g–1. The aqueous graphene/VOxsymmetric supercapacitors (SSCs) can reach a high energy density of 54 Wh kg–1with virtually no capacitance loss after 20 000 cycles. Moreover, the flexible quasi‐solid‐state graphene/VOxSSCs can reach a very high energy density of 72 Wh kg–1, or 7.7 mWh cm–3, outperforming many commercial devices. WithRct < 0.02 Ω and Coulombic efficiency close to 100%, these gel graphene/VOxSSCs can retain 92% of their capacitance after 20 000 cycles. The process enables the direct fabrication of redox‐active electrodes that can be integrated with essentially any substrate including silicon wafers and flexible substrates, showing great promise for next‐generation large‐area flexible displays and wearable electronic devices.

     
    more » « less