skip to main content

Search for: All records

Creators/Authors contains: "Turner, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper provides an overview of the MDaS S-STEM scholarship program. With the growing need for professionals with technology and critical thinking skills related to data analysis, the MDaS program employs established recruitment and retention activities for undergraduates in STEM fields, to encourage consideration of careers in data science related fields. The purpose of the program is to provide financial and professional support to low-income and underrepresented STEM students to improve their chances of completing degrees related to data science. This paper presents the motivation for the program, its goals, structure, research questions, and the design and implementation of its bootcamp cohort building component for engaging students. The results and experiences related to its first year of operation are presented.
    Free, publicly-accessible full text available June 1, 2023
  2. The five primary sites proposed for International Ocean Discovery Program (IODP) Expedition 395, which was postponed because of the COVID-19 pandemic, were cored during IODP Expedition 395C. The Expedition 395C operations, shipboard measurements, and sampling were adjusted to account for the absence of a sailing science party. The Expedition 395/395C objectives are (1) to investigate temporal variations in ocean crust generation at the Reykjanes Ridge and test hypotheses for the influence of Iceland mantle plume fluctuations on these processes, (2) to analyze sedimentation rates at the Björn and Gardar contourite drifts, as proxies for Cenozoic variations of North Atlantic deepwater circulation, and for uplift and subsidence of the Greenland-Scotland Ridge gateway related to plume activity, and (3) to analyze the alteration of oceanic crust and its interaction with seawater and sediments. During Expedition 395C, basalt cores were collected at four sites: U1554, U1555, U1562, and U1563. Sediment cores were also collected from these sites as well as from Site U1564, and casing was installed to 602 m at Site U1554. The amount of recovered cores, their preliminary descriptions, and the analyses of shipboard samples show that the results of Expedition 395C will fulfill a significant part of the Expedition 395more »objectives. Basalts were collected from two V-shaped ridge and trough pairs, which will allow the investigation of the variability in mantle source and temperature causing this ridge/trough pattern. Basalt cores span an expected age range of 2.8–13.9 Ma, which will allow us to investigate the hydrothermal weathering processes. Sediments from the Björn drift were cored to basement, along with the uppermost 600 m of sediments from the Gardar drift. The data provided by Expedition 395C are a major advancement in achieving the work of Expedition 395.« less
    Free, publicly-accessible full text available February 1, 2023
  3. Abstract

    Salinity control, nutrient additions, and sediment supply were directly or indirectly the rationale for a $220 million coastal wetland restoration project (Davis Pond River Diversion) that began in 2002. We sampled Mississippi River water going in and out of the receiving basin from 1999 to 2018 to understand why wetland loss increased after it began. There was a reduction in inorganic sediments, nitrogen (N), and phosphorus (P) concentrations within the ponding area of 77%, 39% and 34%, respectively, which is similar to that in other wetlands. But the average sediment accumulation of 0.6 mm year−1inadequately balances the present-day 5.6 mm year−1sea level rise or the 7.9 ± 0.13 mm year−1accretion rates in these organic soils. Nutrients added likely reduced live belowground biomass and soil strength, and increased decomposition of the organic matter necessary to sustain elevations. The eutrophication of the downstream aquatic system from the diversion, principally by P additions, increased Chlaconcentrations to a category of ‘poor’ water quality. We conclude that this diversion, if continued, will be a negative influence on wetland area and will eutrophy the estuary. It is a case history example for understanding the potential effects arising from proposed river diversions.

  4. At slow-spreading ridges, plate separation is commonly partly accommodated by slip on long-lived detachment faults, exposing upper mantle and lower crustal rocks on the seafloor. However, the mechanics of this process, the subsurface structure, and the interaction of these faults remain largely unknown. We report the results of a network of 56 ocean-bottom seismographs (OBSs), deployed in 2016 at the Mid-Atlantic Ridge near 13°N, that provided dense spatial coverage of two adjacent detachment faults and the intervening ridge axis. Although both detachments exhibited high levels of seismicity, they are separated by an ~8-km-wide aseismic zone, indicating that they are mechanically decoupled. A linear band of seismic activity, possibly indicating magmatism, crosscuts the 13°30′N domed detachment surface, confirming previous evidence for fault abandonment. Farther south, where the 2016 OBS network spatially overlapped with a similar survey done in 2014, significant changes in the patterns of seismicity between these surveys are observed. These changes suggest that oceanic detachments undergo previously unobserved cycles of stress accumulation and release as plate spreading is accommodated.
  5. The intersection between the Mid-Atlantic Ridge and Iceland hotspot provides a natural laboratory where the composition and dynamics of Earth’s upper mantle can be observed. Plume-ridge interaction drives variations in the melting regime, which result in a range of crustal types, including a series of V-shaped ridges (VSRs) and V-shaped troughs (VSTs) south of Iceland. Time-dependent mantle upwelling beneath Iceland dynamically supports regional bathymetry and leads to changes in the height of oceanic gateways, which in turn control the flow of deep water on geologic timescales. Expedition 395 has three objectives: (1) to test contrasting hypotheses for the formation of VSRs, (2) to understand temporal changes in ocean circulation and explore connections with plume activity, and (3) to reconstruct the evolving chemistry of hydrothermal fluids with increasing crustal age and varying sediment thickness and crustal architecture. This expedition will recover basaltic samples from crust that is blanketed by thick sediments and is thus inaccessible when using dredging. Major, trace, and isotope geochemistry of basalts will allow us to observe spatial and temporal variations in mantle melting processes. We will test the hypothesis that the Iceland plume thermally pulses on two timescales (5–10 and ~30 Ma), leading to fundamental changes inmore »crustal architecture. This idea will be tested against alternative hypotheses involving propagating rifts and buoyant mantle upwelling. Millennial-scale paleoclimate records are contained in rapidly accumulated sediments of contourite drifts in this region. The accumulation rate of these sediments is a proxy for current strength, which is moderated by dynamic support of oceanic gateways such as the Greenland-Scotland Ridge. These sediments also provide constraints for climatic events including Pliocene warmth, the onset of Northern Hemisphere glaciation, and abrupt Late Pleistocene climate change. Our combined approach will explore relationships between deep Earth processes, ocean circulation, and climate. Our objectives will be addressed by recovering sedimentary and basaltic cores, and we plan to penetrate ~130 m into igneous basement at five sites east of Reykjanes Ridge. Four sites intersect VSR/VST pairs, one of which coincides with Björn drift. A fifth site is located over 32.4 My old oceanic crust that is devoid of V-shaped features. This site was chosen because it intersects Oligocene–Miocene sediments of Gardar drift. Recovered sediments and basalts will provide a major advance in our understanding of mantle dynamics and the linked nature of Earth’s interior, oceans, and climate.« less
  6. Free, publicly-accessible full text available September 1, 2023
  7. Abstract

    This paper reports on theγ-ray properties of the 2018 Galactic nova V392 Per, spanning photon energies ∼0.1 GeV–100 TeV by combining observations from the Fermi Gamma-ray Space Telescope and the HAWC Observatory. As one of the most rapidly evolvingγ-ray signals yet observed for a nova, GeVγ-rays with a power-law spectrum with an index Γ = 2.0 ± 0.1 were detected over 8 days following V392 Per’s optical maximum. HAWC observations constrain the TeVγ-ray signal during this time and also before and after. We observe no statistically significant evidence of TeVγ-ray emission from V392 Per, but present flux limits. Tests disfavor the extension of the Fermi Large Area Telescope spectrum to energies above 5 TeV by 2 standard deviations (95%) or more. We fit V392 Per’s GeVγ-rays with hadronic acceleration models, incorporating optical observations, and compare the calculations with HAWC limits.

  8. Abstract The extragalactic background light (EBL) contains all the radiation emitted by nuclear and accretion processes in stars and compact objects since the epoch of recombination. Measuring the EBL density directly is challenging, especially in the near-to-far-infrared wave band, mainly due to the zodiacal light foreground. Instead, gamma-ray astronomy offers the possibility to indirectly set limits on the EBL by studying the effects of gamma-ray absorption in the very high energy (VHE: >100 GeV) spectra of distant blazars. The High Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is one of the few instruments sensitive to gamma rays with energies above 10 TeV. This offers the opportunity to probe the EBL in the near/mid-IR region: λ = 1–100 μ m. In this study, we fit physically motivated emission models to Fermi-LAT gigaelectronvolt data to extrapolate the intrinsic teraelectronvolt spectra of blazars. We then simulate a large number of absorbed spectra for different randomly generated EBL model shapes and calculate Bayesian credible bands in the EBL intensity space by comparing and testing the agreement between the absorbed spectra and HAWC extragalactic observations of two blazars. The resulting bands are in agreement with current EBL lower and upper limits, showing a downward trendmore »toward higher wavelength values λ > 10 μ m also observed in previous measurements.« less
    Free, publicly-accessible full text available July 1, 2023