skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Twining, Cornelia W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In response to a warming planet with earlier springs, migratory animals are adjusting the timing of essential life stages. Although these adjustments may be essential for keeping pace with resource phenology, they may prove insufficient, as evidenced by population declines in many species. However, even when species can match the tempo of climate change, other consequences may emerge when exposed to novel conditions earlier in the year. Here, using three long-term datasets on bird reproduction, daily insect availability, and weather, we investigated the complex mechanisms affecting reproductive success in an aerial insectivore, the tree swallow (Tachycineta bicolor). By examining breeding records over nearly half a century, we discovered that tree swallows have continuously advanced their egg laying by ∼3 d per decade. However, earlier-hatching offspring are now exposed to inclement weather events twice as often as they were in the 1970s. Our long-term daily insect biomass dataset shows no long-term trends over 25 y but precipitous drops in flying insect numbers on days with low ambient temperatures. Insect availability has a considerable impact on chick survival: Even a single inclement weather event can reduce offspring survival by >50%. Our results highlight the multifaceted threats that climate change poses on migrating species. The decoupling between cold snap occurrence and generally warming spring temperatures can affect reproductive success and threaten long-term persistence of populations. Understanding the exact mechanisms that endanger aerial insectivores is especially timely because this guild is experiencing the steepest and most widespread declines across North America and Europe.

     
    more » « less
  2. Abstract

    Animals often shape environmental microbial communities, which can in turn influence animal gut microbiomes. Invasive species in critical habitats may reduce grazing pressure from native species and shift microbial communities. The landlocked coastal ponds, pools, and caves that make up the Hawaiian anchialine ecosystem support an endemic shrimp (Halocaridina rubra) that grazes on diverse benthic microbial communities, including orange cyanobacterial‐bacterial crusts and green algal mats. Here, we asked how shrimp: (1) shape the abundance and composition of microbial communities, (2) respond to invasive fishes, and (3) whether their gut microbiomes are affected by environmental microbial communities. We demonstrate that ecologically relevant levels of shrimp grazing significantly reduce epilithon biomass. Shrimp grazed readily and grew well on both orange crusts and green mat communities. However, individuals from orange crusts were larger, despite crusts having reduced concentrations of key fatty acids. DNA profiling revealed shrimp harbor a resident gut microbiome distinct from the environment, which is relatively simple and stable across space (including habitats with different microbial communities) and time (between wild‐caught individuals and those maintained in the laboratory for >2 yr). DNA profiling also suggests shrimp grazing alters environmental microbial community composition, possibly through selective consumption and/or physical interactions. While this work suggests grazing by endemic shrimp plays a key role in shaping microbial communities in the Hawaiian anchialine ecosystem, the hypothesized drastic ecological shifts resulting from invasive fishes may be an oversimplification as shrimp may largely avoid predation. Moreover, environmental microbial communities may have little influence on shrimp gut microbiomes.

     
    more » « less
  3. Abstract

    Aquatic and terrestrial ecosystems are connected through reciprocal fluxes of energy and nutrients that can subsidize consumers. Past research on reciprocal aquatic–terrestrial subsidies to consumers has generally focused on subsidy quantity while ignoring major differences in the nutritional composition of aquatic and terrestrial resources. Because aquatic resources contain substantially more highly unsaturated omega‐3 fatty acids (HUFAs) than terrestrial resources, aquatic subsidies may play a unique role by supplying these critical compounds to both aquatic and terrestrial consumers.

    Here, we first characterized nutritional quality in terms of HUFA content in aquatic and terrestrial insect prey. We then used bulk stable isotope analyses to estimate subsidy use by stream and riparian consumers coupled with compound‐specific stable isotope analyses, which allowed us to document consumer HUFA sources. Finally, in order to understand the nutritional importance of aquatic‐derived HUFAs for riparian consumers, we conducted manipulative diet experiments on Eastern Phoebe (Sayornis phoebe) chicks in the laboratory.

    Aquatic insects were significantly enriched in HUFAs, mainly in terms of eicosapentaenoic acid (EPA), compared with terrestrial insects. Stream fishes relied mainly upon aquatic resources, while insectivorous birds varied in their use of aquatic subsidies across sites. However, like stream fishes, Eastern Phoebe chicks received HUFAs from aquatic insects, even when they were heavily reliant upon terrestrial insects for their overall diet. In the laboratory, dietary HUFAs, such as those supplied by aquatic insects, increased the growth rate and condition of Eastern Phoebe chicks.

    This study demonstrates that aquatic and terrestrial subsidies are not nutritionally reciprocal from the perspective of consumers because aquatic resources are the main source of critical fatty acids for both stream and riparian consumers. It also confirms previous findings on the nutritional importance of HUFAs for riparian birds, demonstrating that an insectivorous riparian lifestyle influences avian nutritional needs. Finally, our findings raise the possibility that birds and other riparian insectivores may experience nutritional mismatches with terrestrial prey if they do not have access to high‐quality aquatic subsidies as a consequence of aquatic habitat degradation or shifts in consumer and resource phenology.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less