Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Understanding the impact of microbial interactions on plants is critical for maintaining healthy native ecosystems and sustainable agricultural practices. Despite the reality that genetically distinct plants host multiple microbes of large effect in the field, it remains unclear the extent to which host genotypes modulate non‐additive microbial interactions and how these interactions differ between benign/pathogenic environments. Our study fills this gap by performing a large‐scale manipulative microbiome experiment across seven genotypes of the model legumeMedicago truncatula. We combine plant performance metrics, survival analyses, predictive modelling, RNA extractions and targeted gene expression to assess how host genotype and microbes non‐additively interact to shape plant growth and disease ecology. Our results reveal three important findings: (1) host genotypes with high tolerance to pathogens benefit more from multiple mutualist interactions than susceptible genotypes, (2) only high‐tolerance genotypes retain the same beneficial host performance outcomes from the benign environment within the pathogenic environment and (3) the quality of the symbiotic relationship with mutualists is a strong predictor of host survival against pathogenic disease. By applying these findings towards developing crops that promote synergistic microbial interactions, yields and pathogen defence could be simultaneously increased while reducing the need for toxic fertilisers and pesticides.more » « lessFree, publicly-accessible full text available May 23, 2026
-
The increasing demand for optical technologies with dynamic spectral control has driven interest in chromogenic materials, particularly for applications in tunable infrared metasurfaces. Phase-change materials such as vanadium dioxide and germanium–antimony–tellurium, for instance, have been widely used in the infrared regime. However, their reliance on thermal and electrical tuning introduces challenges such as high power consumption, limited emissivity tuning, and slow modulation speeds. Photochromic materials may offer an alternative approach to dynamic infrared metasurfaces, potentially overcoming these limitations through rapid, light-induced changes in their optical properties. This manuscript explores the potential of thiazolothiazole-embedded polymers, known for their reversible photochromic transitions and strong infrared absorption changes, for use in tunable infrared metasurfaces. The material exhibits low absorption and a strong photochromic contrast in the spectral range from 1500 cm−1 to 1700 cm−1, making it suitable for dynamic infrared light control. This manuscript reports on infrared imaging experiments demonstrating the photochromic contrast in thiazolothiazole-embedded polymer, and thereby provides compelling evidence for its potential applications in dynamic infrared metasurfaces.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available May 8, 2026
-
Free, publicly-accessible full text available March 25, 2026
-
Free, publicly-accessible full text available January 16, 2026
-
Free, publicly-accessible full text available February 24, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available February 18, 2026
An official website of the United States government
