skip to main content

Search for: All records

Creators/Authors contains: "Tysoe, Wilfred T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2024
  2. Free, publicly-accessible full text available October 31, 2023
  3. Mechano- or tribochemical processes are often induced by the large pressures, of the order of 1 GPa, exerted at contacting asperities at the solid–solid interface. These tribochemical process are not very well understood because of the difficulties of probing surface-chemical reaction pathways occurring at buried interfaces. Here, strategies for following surface reaction pathways in detail are illustrated for the tribochemical decomposition of 7-octenoic and octanoic acid adsorbed on copper. The chemistry was measured in ultrahigh vacuum by sliding either a tungsten carbide ball or a silicon atomic force microscope (AFM) tip over the surface to test a previous proposal that the nature of the terminal group in the carboxylic acid, vinyl versus alkyl, could influence its binding to the counterface, and therefore the reaction rate. The carboxylic acids bind strongly to the copper substrate as carboxylates to expose the hydrocarbon terminus. The tribochemical reaction rate was found to be independent of the nature of the hydrocarbon terminus, although the pull-off and friction forces measured by the AFM were different. The tribochemical reaction is initiated in the same way as the thermal reaction, by the carboxylate group tilting to eliminate carbon dioxide and deposit alkyl species onto the surface. This reactionmore »occurs thermally at ∼640 K, but tribochemically at room temperature, producing significant differences in the rates and selectivities of the subsequent decomposition pathways of the adsorbed products.« less
  4. The effect of the terminal groups on the nature of the films formed by the thermal decomposition of carboxylic acids on copper is studied in ultrahigh vacuum using temperature-programmed desorption (TPD), scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). The influence of the presence of vinyl or alkynyl terminal groups and chain length is studied using heptanoic, octanoic, 6-heptenoic, 7-octenoic, 6-heptynoic and 7-octynoic acids. The carboxylic acids form strongly bound carboxylates following adsorption on copper at room temperature, and thermally decompose between ∼500 and 650 K. Previous work has shown that this occurs by the carboxylate plane tilting towards the surface to eliminate carbon dioxide and deposit a hydrocarbon fragment. The fragment can react to evolve hydrogen or form oligomeric species on the surface, where the amount of carbon increases for carboxylic acids that contain terminal functional groups that can anchor to the surface. These results will be used to compare with the carbonaceous films formed by the mechanochemical decomposition of carboxylic acids on copper, which occurs at room temperature. This is expected to lead to less carbon being deposited on the surface than during thermal decomposition.
  5. The surface structure and reaction pathways of 7-octenoic acid are studied on a clean copper substrate in ultrahigh vacuum using a combination of reflection–absorption infrared spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption and scanning-tunneling microscopy, supplemented by first-principles density functional theory calculations. 7-Octenoic acid adsorbs molecularly on copper below ∼260 K in a flat-lying configuration at low coverages, becoming more upright as the coverage increases. It deprotonates following adsorption at ∼300 K to form an η 2 -7-octenoate species. This also lies flat at low coverages, but forms a more vertical self-assembled monolayer as the coverage increases. Heating causes the 7-octenoate species to start to tilt, which produces a small amount of carbon dioxide at ∼550 K and some hydrogen in a peak at ∼615 K ascribed to the reaction of these tilted species. The majority of the decarbonylation occurs at ∼650 K when CO 2 and hydrogen evolve simultaneously. Approximately half of the carbon is deposited on the surface as oligomeric species that undergo further dehydrogenation to evolve more hydrogen at ∼740 K. This leaves a carbonaceous layer on the surface, which contains hexagonal motifs connoting the onset of graphitization of the surface.