skip to main content

Search for: All records

Creators/Authors contains: "Tytell, Eric D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. MONOLITh is a bioinspired, untethered crawling soft robot. The body is made from a lightweight reticulated foam that provides passive shape restoration and supports the internally embedded components (motors, battery, wireless controller). DC motors pull tendons attached to an external fabric that distributes forces, and novel differential friction elements enable forward locomotion. This robot is capable of traveling at a maximum speed of 0.1 body lengths/sec, lifting 100% its body weight, while remaining 95% soft materials by volume. We expect that the design principles and materials used to make this low cost and scalable robot will lead to the development of useful, and commercially viable, terrestrial or extraterrestrial vehicles.
    Free, publicly-accessible full text available February 9, 2023
  2. Locomotion is an essential behaviour for the survival of all animals. The neural circuitry underlying locomotion is therefore highly robust to a wide variety of perturbations, including injury and abrupt changes in the environment. In the short term, fault tolerance in neural networks allows locomotion to persist immediately after mild to moderate injury. In the longer term, in many invertebrates and vertebrates, neural reorganization including anatomical regeneration can restore locomotion after severe perturbations that initially caused paralysis. Despite decades of research, very little is known about the mechanisms underlying locomotor resilience at the level of the underlying neural circuits and coordination of central pattern generators (CPGs). Undulatory locomotion is an ideal behaviour for exploring principles of circuit organization, neural control and resilience of locomotion, offering a number of unique advantages including experimental accessibility and modelling tractability. In comparing three well-characterized undulatory swimmers, lampreys, larval zebrafish and Caenorhabditis elegans, we find similarities in the manifestation of locomotor resilience. To advance our understanding, we propose a comparative approach, integrating experimental and modelling studies, that will allow the field to begin identifying shared and distinct solutions for overcoming perturbations to persist in orchestrating this essential behaviour.
  3. Abstract Swimming in schools has long been hypothesized to allow fish to save energy. Fish must exploit the energy from the wakes of their neighbors for maximum energy savings, a feat that requires them to both synchronize their tail movements and stay in certain positions relative to their neighbors. To maintain position in a school, we know that fish use multiple sensory systems, mainly their visual and flow sensing lateral line system. However, how fish synchronize their swimming movements in a school is still not well understood. Here we test the hypothesis that this synchronization may depend on functional differences in the two branches of the lateral line sensory system that detects water movements close to the fish’s body. The anterior branch, located on the head, encounters largely undisturbed free-stream flow, while the posterior branch, located on the trunk and tail, encounters flow that has been affected strongly by the tail movement. Thus, we hypothesize that the anterior branch may be more important for regulating position within the school, while the posterior branch may be more important for synchronizing tail movements. Our study examines functional differences in the anterior and posterior lateral line in the structure and tail synchronization ofmore »fish schools. We used a widely available aquarium fish that schools, the giant danio, Devario equipinnatus. Fish swam in a large circular tank where stereoscopic videos recordings were used to reconstruct the 3 D position of each individual within the school and to track tail kinematics to quantify synchronization. For one fish in each school, we ablated using cobalt chloride either the anterior region only, the posterior region only, or the entire lateral line system. We observed that ablating any region of the lateral line system causes fish to swim in a “box” or parallel swimming formation, which was different from the diamond formation observed in normal fish. Ablating only the anterior region did not substantially reduce tail beat synchronization but ablating only the posterior region caused fish to stop synchronizing their tail beats, largely because the tail beat frequency increased dramatically. Thus, the anterior and posterior lateral line system appear to have different behavioral functions in fish. Most importantly, we showed that the posterior lateral line system played a major role in determining tail beat synchrony in schooling fish. Without synchronization, swimming efficiency decreases, which can have an impact on the fitness of the individual fish and group.« less
  4. null (Ed.)
    Abstract One key evolutionary innovation that separates vertebrates from invertebrates is the notochord, a central element that provides the stiffness needed for powerful movements. Later, the notochord was further stiffened by the vertebrae, cartilaginous and bony elements, surrounding the notochord. The ancestral notochord is retained in modern vertebrates as intervertebral material, but we know little about its mechanical interactions with surrounding vertebrae. In this study, the internal shape of the vertebrae—where this material is found—was quantified in sixteen species of fishes with various body shapes, swimming modes, and habitats. We used micro-computed tomography to measure the internal shape. We then created and mechanically tested physical models of intervertebral joints. We also mechanically tested actual vertebrae of five species. Material testing shows that internal morphology of the centrum significantly affects bending and torsional stiffness. Finally, we performed swimming trials to gather kinematic data. Combining these data, we created a model that uses internal vertebral morphology to make predictions about swimming kinematics and mechanics. We used linear discriminant analysis (LDA) to assess the relationship between vertebral shape and our categorical traits. The analysis revealed that internal vertebral morphology is sufficient to predict habitat, body shape, and swimming mode in our fishes. Thismore »model can also be used to make predictions about swimming in fishes not easily studied in the lab, such as deep sea and extinct species, allowing the development of hypotheses about their natural behavior.« less
  5. The anterior body of many fishes is shaped like an airfoil turned on its side. With an oscillating angle to the swimming direction, such an airfoil experiences negative pressure due to both its shape and pitching movements. This negative pressure acts as thrust forces on the anterior body. Here, we apply a high-resolution, pressure-based approach to describe how two fishes, bluegill sunfish (Lepomis macrochirusRafinesque) and brook trout (Salvelinus fontinalisMitchill), swimming in the carangiform mode, the most common fish swimming mode, generate thrust on their anterior bodies using leading-edge suction mechanics, much like an airfoil. These mechanics contrast with those previously reported in lampreys—anguilliform swimmers—which produce thrust with negative pressure but do so through undulatory mechanics. The thrust produced on the anterior bodies of these carangiform swimmers through negative pressure comprises 28% of the total thrust produced over the body and caudal fin, substantially decreasing the net drag on the anterior body. On the posterior region, subtle differences in body shape and kinematics allow trout to produce more thrust than bluegill, suggesting that they may swim more effectively. Despite the large phylogenetic distance between these species, and differences near the tail, the pressure profiles around the anterior body are similar. Wemore »suggest that such airfoil-like mechanics are highly efficient, because they require very little movement and therefore relatively little active muscular energy, and may be used by a wide range of fishes since many species have appropriately shaped bodies.

    « less
  6. Abstract

    Fishes generate force to swim by activating muscles on either side of their flexible bodies. To accelerate, they must produce higher muscle forces, which leads to higher reaction forces back on their bodies from the environment. If their bodies are too flexible, the forces during acceleration could not be transmitted effectively to the environment, but fish can potentially use their muscles to increase the effective stiffness of their body. Here, we quantified red muscle activity during acceleration and steady swimming, looking for patterns that would be consistent with the hypothesis of body stiffening. We used high-speed video, electromyographic recordings, and a new digital inertial measurement unit to quantify body kinematics, red muscle activity, and 3D orientation and centre of mass acceleration during forward accelerations and steady swimming over several speeds. During acceleration, fish co-activated anterior muscle on the left and right side, and activated all muscle sooner and kept it active for a larger fraction of the tail beat cycle. These activity patterns are both known to increase effective stiffness for muscle tissuein vitro, which is consistent with our hypothesis that fish use their red muscle to stiffen their bodies during acceleration. We suggest that during impulsive movements, flexiblemore »organisms like fishes can use their muscles not only to generate propulsive power but to tune the effective mechanical properties of their bodies, increasing performance during rapid movements and maintaining flexibility for slow, steady movements.

    « less