- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002100000000000
- More
- Availability
-
03
- Author / Contributor
- Filter by Author / Creator
-
-
Gao, Jie (3)
-
Uradnik, Filip (3)
-
Wang, Amanda (3)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 23, 2026
-
Uradnik, Filip; Wang, Amanda; Gao, Jie (, Proceedings of the 24th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS))Sequential learning models situations where agents predict a ground truth in sequence, by using their private, noisy measurements, and the predictions of agents who came earlier in the sequence. We study sequential learning in a social network, where agents only see the actions of the previous agents in their own neighborhood. The fraction of agents who predict the ground truth correctly depends heavily on both the network topology and the ordering in which the predictions are made. A natural question is to find an ordering, with a given network, to maximize the (expected) number of agents who predict the ground truth correctly. In this paper, we show that it is in fact NP-hard to answer this question for a general network, with both the Bayesian learning model and a simple majority rule model. Finally, we show that even approximating the answer is hard.more » « lessFree, publicly-accessible full text available May 19, 2026
-
Uradnik, Filip; Wang, Amanda; Gao, Jie (, 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025))Free, publicly-accessible full text available May 19, 2026
An official website of the United States government
