skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "V, Jessica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    Research into student affect detection has historically relied on ground truth measures of emotion that utilize one of three sources of data: (1) self-report data, (2) classroom observations, or (3) sensor data that is retrospectively labeled. Although a few studies have compared sensor- and observation-based ap-proaches to student affective modeling, less work has explored the relationship between self-report and classroom observa-tions. In this study, we use both recurring self-reports (SR) and classroom observation (BROMP) to measure student emotion during a study involving middle school students interacting with a game-based learning environment for microbiology educa-tion. We use supervised machine learning to develop two sets of affect detectors corresponding to SR and BROMP-based measures of student emotion, respectively. We compare the two sets of detectors in terms of their most relevant features, as well as correlations of their output with measures of student learning and interest. Results show that highly predictive features in the SR detectors are different from those selected for BROMP-based detectors. The associations with interest and motivation measures show that while SR detectors captured underlying motivations, the BROMP detectors seemed to capture more in-the-moment information about the student申fs experience. Evi-dence suggests that there is benefit of using both sources of data to model different components of student affect. 
    more » « less