skip to main content

Search for: All records

Creators/Authors contains: "Valencia, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2023
  2. Free, publicly-accessible full text available July 1, 2023
  3. Abstract With the advance of particle accelerator and detector technologies, the neutrino physics landscape is rapidly expanding. As neutrino oscillation experiments enter the intensity and precision frontiers, neutrino–nucleus interaction measurements are providing crucial input. MINERvA is an experiment at Fermilab dedicated to the study of neutrino–nucleus interactions in the regime of incident neutrino energies from one to few GeV. The experiment recorded neutrino and antineutrino scattering data with the NuMI beamline from 2009 to 2019 using the Low-Energy and Medium-Energy beams that peak at 3GeV and 6GeV, respectively. This article reviews the broad spectrum of interesting nuclear and particle physicsmore »that MINERvA investigations have illuminated. The newfound, detailed knowledge of neutrino interactions with nuclear targets thereby obtained is proving essential to continued progress in the neutrino physics sector.« less
    Free, publicly-accessible full text available December 1, 2022
  4. Free, publicly-accessible full text available November 1, 2022
  5. Free, publicly-accessible full text available November 1, 2022
  6. null (Ed.)

    Isolated MgSiO3 and Mg2SiO4 molecules are shown here to exhibit bright infrared (IR) features that fall close to unattributed astronomical lines observed toward objects known to possess crystalline enstatite and forsterite, minerals of the same respective empirical formulae. These molecules are therefore tantalizing candidates for explaining the origin of such features. Furthermore, the C2v monomer minima of each formula set have dipole moments on the order of 10.0 D or larger making them desirable candidates for radioastronomical observation as enabled through rotational spectroscopic data further provided in this high-level CCSD(T)-F12/cc-pVTZ-F12 quantum chemical study. Astrophysical detection of these molecules could informmore »the build-up pathways for creating nanocrystals from small molecules in protoplanetary discs or could show the opposite in explaining the destruction of enstatite and forsterite minerals in supernovae events or other high-energy stellar processes. This work also shows that the lowest energy isomers for molecules containing the geologically necessary elements Mg and Si have oxygen bonded between any of the other heavier elements making oxygen the glue for pre-mineralogic chemistry.

    « less