Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Polyacrylamide hydrogels are widely used in biomedical applications due to their tunable mechanical properties and charge neutrality. Our recent tribological investigations of polyacrylamide gels have revealed tunable and pH-dependent friction behavior. To determine the origins of this pH-responsiveness, we prepared polyacrylamide hydrogels with two different initiating chemistries: a reduction–oxidation (redox)-initiated system using ammonium persulfate (APS) and
N,N,N ′N ′- tetramethylethylenediamine (TEMED) and a UV-initiated system with 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959). Hydrogel swelling, mechanical properties, and tribological behavior were investigated in response to solution pH (ranging from ≈ 0.34 to 13.5). For polyacrylamide hydrogels in sliding contact with glass hemispherical probes, friction coefficients decreased fromµ = 0.07 ± 0.02 toµ = 0.002 ± 0.002 (redox-initiated) and fromµ = 0.05 ± 0.03 toµ = 0.003 ± 0.003 (UV-initiated) with increasing solution pH. With hemispherical polytetrafluoroethylene (PTFE) probes, friction coefficients of redox-initiated hydrogels similarly decreased fromµ = 0.06 ± 0.01 toµ = 0.002 ± 0.001 with increasing pH. Raman spectroscopy measurements demonstrated hydrolysis and the conversion of amide groups to carboxylic acid in basic conditions. We therefore propose that the mechanism for pH-responsive friction in polyacrylamide hydrogels may be credited to hydrolysis-driven swelling through the conversion of side chain amide groups into carboxylic groups and/or crosslinker degradation. Our results could assist in the rational design of hydrogel-based tribological pairs for biomedical applications from acidic to alkaline conditions.Graphical abstract -
The ability of cells to reorganize in response to external stimuli is important in areas ranging from morphogenesis to tissue engineering. While nematic order is common in biological tissues, it typically only extends to small regions of cells interacting via steric repulsion. On isotropic substrates, elongated cells can co-align due to steric effects, forming ordered but randomly oriented finite-size domains. However, we have discovered that flat substrates with nematic order can induce global nematic alignment of dense, spindle-like cells, thereby influencing cell organization and collective motion and driving alignment on the scale of the entire tissue. Remarkably, single cells are not sensitive to the substrate’s anisotropy. Rather, the emergence of global nematic order is a collective phenomenon that requires both steric effects and molecular-scale anisotropy of the substrate. To quantify the rich set of behaviours afforded by this system, we analyse velocity, positional and orientational correlations for several thousand cells over days. The establishment of global order is facilitated by enhanced cell division along the substrate’s nematic axis, and associated extensile stresses that restructure the cells’ actomyosin networks. Our work provides a new understanding of the dynamics of cellular remodelling and organization among weakly interacting cells.
-
Abstract The most widely-used representation of the compressible, isotropic, neo-Hookean hyperelastic model is considered in this paper. The version under investigation is that which is implemented in the commercial finite element software ABAQUS, ANSYS and COMSOL. Transverse stretch solutions are obtained for the following homogeneous deformations: uniaxial loading, equibiaxial loading in plane stress, and uniaxial loading in plane strain. The ground-state Poisson’s ratio is used to parameterize the constitutive model, and stress solutions are computed numerically for the physically permitted range of its values. Despite its broad application to a number of engineering problems, the physical limitations of the model, particularly in the small to moderate stretch regimes, are not explored. In this work, we describe and analyze results and make some critical observations, underlining the model’s advantages and limitations. For example, a snap-back feature of the transverse stretch is identified in uniaxial compression, a physically undesirable behavior unless validated by experimental data. The domain of this non-unique solution is determined in terms of the ground-state Poisson’s ratio and the state of stretch and stress. The analyses we perform are essential to enable the understanding of the characteristics of the standard, compressible, isotropic, neo-Hookean model used in ABAQUS, ANSYS and COMSOL. In addition, our results provide a framework for the parameter-fitting procedure needed to characterize this standard, compressible, isotropic neo-Hookean model in terms of experimental data.
-
Here we present a new, compact magnetic tweezers design that enables precise application of a wide range of dynamic forces to soft materials without the need to raise or lower the magnet height above the sample. This is achieved through the controlled rotation of the permanent magnet array with respect to the fixed symmetry axis defined by a custom-built iron yoke. These design improvements increase the portability of the device and can be implemented within existing microscope setups without the need for extensive modification of the sample holders or light path. This device is particularly well-suited to active microrheology measurements using either creep analysis, in which a step force is applied to a micron-sized magnetic particle that is embedded in a complex fluid, or oscillatory microrheology, in which the particle is driven with a periodic waveform of controlled amplitude and frequency. In both cases, the motions of the particle are measured and analyzed to determine the local dynamic mechanical properties of the material.more » « less
-
Materials that utilize heterogeneous microstructures to control macroscopic mechanical response are ubiquitous in nature. Yet, translating nature's lessons to create synthetic soft solids has remained challenging. This is largely due to the limited synthetic routes available for creating soft composites, particularly with submicron features, as well as uncertainty surrounding the role of such a microstructured secondary phase in determining material behavior. This work leverages recent advances in the development of photocrosslinkable thermogelling nanoemulsions to produce composite hydrogels with a secondary phase assembled at well controlled length scales ranging from tens of nm to tens of μm. Through analysis of the mechanical response of these fluid-filled composite hydrogels, it is found that the size scale of the secondary phase has a profound impact on the strength when at or above the elastofracture length. Moreover, this work shows that mechanical integrity of fluid–filled soft solids can be sensitive to the size scale of the secondary phase.more » « less