skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Van Eaton, Alexa R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The 21–22 June 2019 eruption of Raikoke volcano, Russia, provided an opportunity to explore how spatial trends in volcanic lightning locations provide insights into pulsatory eruption dynamics. Using satellite-derived plume heights, we examine the development of lightning detected by Vaisala’s Global Lightning Dataset (GLD360) from eleven, closely spaced eruptive pulses. Results from one-dimensional plume modeling show that the eruptive pulses with maximum heights 9–16.5 km above sea level were capable of producing ice in the upper troposphere, which contributed variably to electrification and volcanic lightning. A key finding is that lightning locations not only followed the main dispersal direction of these ash plumes, but also tracked a lower-level cloud derived from pyroclastic density currents. We show a positive relationship between umbrella cloud expansion and the area over which lightning occurs (the ‘lightning footprint’). These observations suggest useful metrics to characterize ongoing eruptive activity in near real-time. 
    more » « less
  2. Abstract Explosive eruptions expel volcanic gases and particles at high pressures and velocities. Within this multiphase fluid, small ash particles affect the flow dynamics, impacting mixing, entrainment, turbulence, and aggregation. To examine the role of turbulent particle behavior, we conducted an analogue experiment using a particle‐laden jet. We used compressed air as the carrier fluid, considering turbulent conditions at Reynolds numbers from approximately 5,000 to 20,000. Two different particles were examined: 14‐μm diameter solid nickel spheres and 13‐μm diameter hollow glass spheres. These resulted in Stokes numbers between 1 and 35 based on the convective scale. The particle mass percentage in the mixture is varied from 0.3% to more than 20%. Based on a 1‐D volcanic plume model, these Stokes numbers and mass loadings corresponded to millimeter‐scale particle diameters at heights of 4–8 km above the vent during large, sustained eruptions. Through particle image velocimetry, we measured the mean flow behavior and the turbulence statistics in the near‐exit region, primarily focusing on the dispersed phase. We show that the flow behavior is dominated by the particle inertia, with high Stokes numbers reducing the entrainment by more than 40%. When applied to volcanic plumes, these results suggest that high‐density particles can greatly increase the probability of column collapse. 
    more » « less
  3. Abstract The origin of electrical activity accompanying volcanic ash plumes is an area of heightened interest in volcanology. However, it is unclear how intense an eruption needs to be to produce lightning flashes as opposed to “vent discharges,” which represent the smallest scale of electrical activity. This study targets 97 carefully monitored plumes <3 km high from Sakurajima volcano in Japan, from June 1 to 7, 2015. We use multiparametric measurements from sensors including a nine‐station lightning mapping array and an infrared camera to characterize plume ascent. Findings demonstrate that the impulsive, high velocity plumes (>55 m/s) were most likely to create vent discharges, whereas lightning flashes occurred in plumes with high volume flux. We identified conditions where volcanic lightning occurred without detectable vent discharges, highlighting their independent source mechanisms. Our results imply that plume dynamics govern the charging for volcanic lightning, while the characteristics of the source explosion control vent discharges. 
    more » « less